Riding the Right Wavelet: Quantifying Scale Transitions in Fractured Rocks

Roberto E. Rizzo, David Healy, Natalie J. Farrell, Micheal J. Heap

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)
23 Downloads (Pure)

Abstract

The mechanics of brittle failure is a well‐described multiscale process that involves a rapid transition from distributed microcracks to localization along a single macroscopic rupture plane. However, considerable uncertainty exists regarding both the length scale at which this transition occurs and the underlying causes that prompt this shift from a distributed to a localized assemblage of cracks or fractures. For the first time, we used an image analysis tool developed to investigate orientation changes at different scales in images of fracture patterns in faulted materials, based on a two‐dimensional continuous wavelet analysis. We detected the abrupt change in the fracture pattern from distributed tensile microcracks to localized shear failure in a fracture network produced by triaxial deformation of a sandstone core plug. The presented method will contribute to our ability of unraveling the physical processes at the base of catastrophic rock failure, including the nucleation of earthquakes, landslides, and volcanic eruptions.
Original languageEnglish
Pages (from-to)11808-11815
Number of pages8
JournalGeophysical Research Letters
Volume44
Issue number23
Early online date13 Nov 2017
DOIs
Publication statusPublished - 16 Dec 2017

ASJC Scopus subject areas

  • Signal Processing
  • Computers in Earth Sciences
  • Geophysics

Fingerprint

Dive into the research topics of 'Riding the Right Wavelet: Quantifying Scale Transitions in Fractured Rocks'. Together they form a unique fingerprint.

Cite this