Reynolds stress and turbulence estimates in bottom boundary layer of Fall of Warness

Emmanuel Osalusi, Jonathan Charles Side, Robert Ewan Harris

Research output: Contribution to journalArticle

Abstract

A broadband acoustic Doppler current profiler (ADCP) moored on the seabed at 42 m depth has been used to observe the mean and turbulent flow components in the tidally energetic Fall of Warness channel over two tidal cycles. The Reynolds stress has been estimated from the difference in variance between the along-beam velocities of opposing acoustic beams. Near bed stress at 2.63 m above seabed (mab) exceeds 7.5 Pa at the time of mean flow (speed of ~ 1.3 m s- 1) while the ebb stresses are limited to ~ 3.31 Pa during the peak ebb, mean, flow of ~ 1.3 m s- 1. The production of turbulent kinetic energy (TKE), P was found to be negative below 2 × 10- 9 W m- 3 and up to 6 × 10- 4 W m- 3 was estimated during flood flows and decreasing to 3 × 10- 4 W m- 3. The TKE dissipation rate e was estimated by inertial dissipation method (IDM) with the greatest value of 2.43 × 10- 2 W m- 3 observed near the seabed around maximum ebb, falling to 5.75 × 10- 5 W m- 3 around slack water. The comparison between P and e was performed by calculating individual ratios of P corresponding to e using a bootstrap resampling technique. The study shows that the ratio e/P averaged over whole flood and ebb were found to be ~ 0.4138 and ~ 0.4177, respectively, indicating that production exceeded dissipation. The uncertainties in Reynolds stress estimates due to instrument noise were found to be 3 × 10- 4 Pa while 4.52 × 10- 2 Pa can be attributed to the uncertainties due to the increase in the flow-related component. © 2009 Elsevier Ltd. All rights reserved.

Original languageEnglish
Pages (from-to)412-421
Number of pages10
JournalInternational Communications in Heat and Mass Transfer
Volume36
Issue number5
DOIs
Publication statusPublished - May 2009

Keywords

  • ADCP
  • Reynolds stress
  • TKE production
  • Turbulent kinetic energy

Fingerprint Dive into the research topics of 'Reynolds stress and turbulence estimates in bottom boundary layer of Fall of Warness'. Together they form a unique fingerprint.

  • Cite this