Abstract
We consider parameter-elliptic boundary value problems and uniform a priori estimates in L-p-Sobolev spaces of Bessel potential and Besov type. The problems considered are systems of uniform order and mixed-order systems (Douglis-Nirenberg systems). It is shown that compatibility conditions on the data are necessary for such estimates to hold. In particular, we consider the realization of the boundary value problem as an unbounded operator with the ground space being a closed subspace of a Sobolev space and give necessary and sufficient conditions for the realization to generate an analytic semigroup.
Original language | English |
---|---|
Article number | 109 |
Number of pages | 12 |
Journal | Electronic Journal of Differential Equations |
Volume | 2011 |
Publication status | Published - 2011 |
Keywords
- Parameter-ellipticity
- Douglis-Nirenberg systems
- analytic semigroups
- BOUNDARY-VALUE-PROBLEMS
- EIGENVALUE ASYMPTOTICS
- EQUATIONS