Residual circulation in the stratosphere and lower mesosphere as diagnosed from Microwave Limb Sounder data

Janusz Eluszkiewicz, David Crisp, Richard Zurek, Lee Elson, Evan Fishbein, Lucien Froidevaux, Joe Waters, R. G. Grainger, Alyn Lambert, Robert Harwood, Gordon Peckham

Research output: Contribution to journalArticlepeer-review

84 Citations (Scopus)


Results for the residual circulation in the stratosphere and lower mesosphere between September 1991 and August 1994 are reported. This circulation is diagnosed by applying an accurate radiative transfer code to temperature, ozone, and water vapor measurements acquired by the Microwave Limb Sounder (MLS) onboard the Upper Atmosphere Research Satellite (UARS), augmented by climatological distributions of methane, nitrous oxide, nitrogen dioxide, surface albedo, and cloud cover. The sensitivity of the computed heating rates to the presence of Mt. Pinatubo aerosols is explored by utilizing aerosol properties derived from the measurements obtained by the Improved Stratospheric and Mesospheric Sounder instrument, also onboard UARS. The computed vertical velocities exhibit a semiannual oscillation (SAO) around the tropical stratopause, with the region of downward velocities reaching maximum spatial extent in February and August. This behavior reflects the semiannual oscillation in temperature and ozone and mimics that seen in past studies of the October 1978-May 1979 period based on data from the Limb Infrared Monitor of the Stratosphere onboard the Nimbus 7 satellite. The SAO vertical velocities are stronger during the northern winter phase, as expected if planetary waves from the winter hemisphere are involved in driving the SAO. A possible quasi-biennial oscillation (QBO) signal extending from the middle into the upper stratosphere is also hinted at, with the equatorial vertical velocities in the region 10-1 hPa significantly smaller (or even negative) in 1993/94 than in 1992/93. Despite the short data record, the authors believe that this pattern reflects a QBO signal rather than a coincidental interannual variability, since the time-height section of vertical velocity at the equator resembles that of the zonal wind. Wintertime high-latitude descent rates are usually greater in the Northern Hemisphere, but they also exhibit significant variability there. In the three northern winters analyzed in this study, strong downward velocities are diagnosed in the lower stratosphere during stratospheric warmings and are associated with enhanced wave forcing (computed as the momentum residual) in the mid- and upper stratosphere. The implications of the computed circulation for the distribution of tracers are illustrated by the example of the "double-peaked" structure in the water vapor distribution measured by MLS. © 1996 American Meteorological Society.

Original languageEnglish
Pages (from-to)217-240
Number of pages24
JournalJournal of the Atmospheric Sciences
Issue number2
Publication statusPublished - Jan 1996


Dive into the research topics of 'Residual circulation in the stratosphere and lower mesosphere as diagnosed from Microwave Limb Sounder data'. Together they form a unique fingerprint.

Cite this