Reduced air–sea CO2 exchange in the Atlantic Ocean due to biological surfactants

Ryan Pereira, Ian Ashton, Bita Sabbaghzadeh, Jamie D. Shutler, Robert C. Upstill-Goddard

Research output: Contribution to journalArticle

19 Citations (Scopus)
31 Downloads (Pure)

Abstract

Ocean CO2 uptake accounts for 20–40% of the post-industrial sink for anthropogenic CO2. The uptake rate is the product of the CO2 interfacial concentration gradient and its transfer velocity, which is controlled by spatial and temporal variability in near-surface turbulence. This variability complicates CO2 flux estimates and in large part reflects variable sea surface microlayer enrichments in biologically derived surfactants that cause turbulence suppression. Here we present a direct estimate of this surfactant effect on CO2 exchange at the ocean basin scale, with derived relationships between its transfer velocity determined experimentally and total surfactant activity for Atlantic Ocean surface seawaters. We found up to 32% reduction in CO2 exchange relative to surfactant-free water. Applying a relationship between sea surface temperature and total surfactant activity to our results gives monthly estimates of spatially resolved ‘surfactant suppression’ of CO2 exchange. Large areas of reduced CO2 uptake resulted, notably around 20° N, and the magnitude of the Atlantic Ocean CO2 sink for 2014 was decreased by 9%. This direct quantification of the surfactant effect on CO2 uptake at the ocean basin scale offers a framework for further refining estimates of air–sea gas exchange up to the global scale.
Original languageEnglish
Pages (from-to)492–496
Number of pages5
JournalNature Geoscience
Volume11
DOIs
Publication statusPublished - 28 May 2018

Keywords

  • Carbon Cycle
  • Marine Chemistry
  • Surfactants
  • Marine Biology

Fingerprint Dive into the research topics of 'Reduced air–sea CO<sub>2</sub> exchange in the Atlantic Ocean due to biological surfactants'. Together they form a unique fingerprint.

Cite this