TY - JOUR
T1 - Real-Time Control of Distributed Batteries with Blockchain-Enabled Market Export Commitments
AU - Couraud, Benoit
AU - Robu, Valentin
AU - Flynn, David
AU - Andoni, Merlinda
AU - Norbu, Sonam
AU - Quinard, Honorat
N1 - Funding Information:
This work was supported in part by the Innovate U.K. Responsive Flexibility (ReFLEX) under Project 104780, in part by CEDRI project (Community-Scale Energy Demand Reduction in India) under Grant EP/R008655/1
Publisher Copyright:
© 2010-2012 IEEE.
PY - 2022/1
Y1 - 2022/1
N2 - Recent years have seen a surge of interest in distributed residential batteries for households with renewable generation. Yet, assuring battery assets are profitable for their owners requires a complex optimisation of the battery asset and additional revenue sources, such as novel ways to access wholesale energy markets. In this paper, we propose a framework in which wholesale market bids are placed on forward energy markets by an aggregator of distributed residential batteries that are controlled in real time by a novel Home Energy Management System (HEMS) control algorithm to meet the market commitments, while maximising local self-consumption. The proposed framework consists of three stages. In the first stage, an optimal day-ahead or intra-day scheduling of the aggregated storage assets is computed centrally. For the second stage, a bidding strategy is developed for wholesale energy markets. Finally, in the third stage, a novel HEMS real-time control algorithm based on a smart contract allows coordination of residential batteries to meet the market commitments and maximise self-consumption of local production. Using a case study provided by a large U.K.-based energy demonstrator, we apply the framework to an aggregator with 70 residential batteries. Experimental analysis is done using real per minute data for demand and production. Results indicate that the proposed approach increases the aggregator's revenues by 35% compared to a case without residential flexibility, and increases the self-consumption rate of the households by a factor of two. The robustness of the results to uncertainty, forecast errors and to communication latency is also demonstrated.
AB - Recent years have seen a surge of interest in distributed residential batteries for households with renewable generation. Yet, assuring battery assets are profitable for their owners requires a complex optimisation of the battery asset and additional revenue sources, such as novel ways to access wholesale energy markets. In this paper, we propose a framework in which wholesale market bids are placed on forward energy markets by an aggregator of distributed residential batteries that are controlled in real time by a novel Home Energy Management System (HEMS) control algorithm to meet the market commitments, while maximising local self-consumption. The proposed framework consists of three stages. In the first stage, an optimal day-ahead or intra-day scheduling of the aggregated storage assets is computed centrally. For the second stage, a bidding strategy is developed for wholesale energy markets. Finally, in the third stage, a novel HEMS real-time control algorithm based on a smart contract allows coordination of residential batteries to meet the market commitments and maximise self-consumption of local production. Using a case study provided by a large U.K.-based energy demonstrator, we apply the framework to an aggregator with 70 residential batteries. Experimental analysis is done using real per minute data for demand and production. Results indicate that the proposed approach increases the aggregator's revenues by 35% compared to a case without residential flexibility, and increases the self-consumption rate of the households by a factor of two. The robustness of the results to uncertainty, forecast errors and to communication latency is also demonstrated.
KW - Batteries
KW - Blockchain
KW - Degradation
KW - distributed generation
KW - Investment
KW - Optimization
KW - Production
KW - Real-time systems
KW - Renewable energy sources
KW - smart contract
KW - smart grids
UR - http://www.scopus.com/inward/record.url?scp=85118234144&partnerID=8YFLogxK
U2 - 10.1109/TSTE.2021.3121444
DO - 10.1109/TSTE.2021.3121444
M3 - Article
SN - 1949-3029
VL - 13
SP - 579
EP - 591
JO - IEEE Transactions on Sustainable Energy
JF - IEEE Transactions on Sustainable Energy
IS - 1
ER -