Raman scattering studies of ultrashallow Sb implants in strained Si

L. O'Reilly*, Nick S Bennett, P. J. McNally, B. J. Sealy, Nick E. B. Cowern, A. Lankinen, T. O. Tuomi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Sheet resistance (R(s)) reductions are presented for antimony doped layers in strained Si. We use micro-Raman spectroscopy to characterise the impact of a low energy (2 keV) Sb implantation into a thin strained Si layer on the crystalline quality and resultant stress in the strained Si. The use of 325 nm UV laser light enables us to extract information from the top similar to 9 nm of the strained Si layer. Prior to implantation the Si layer is fully strained with a tensile stress value similar to 1.41 GPa, in agreement with the calculated theoretical maximum on a strain relaxed buffer with 17% Ge content. There is a clear decrease in the intensity of the Si Raman signal following Sb implantation. The lattice damage and lattice recovery achieved by subsequent rapid thermal anneal (RTA) is quantified using the amplitude and full width at half maximum (FWHM) of the crystalline Si peak. The shift of the Raman Si peak is a key parameter in the interpretation of the spectra. The ion-implanted sample is studied in terms of a phonon coherence length confinement model. Carrier concentration effects are seen to play a role in the Raman shift following electrical activation of the Sb atoms by RTA.

Original languageEnglish
Pages (from-to)305-309
Number of pages5
JournalJournal of Materials Science: Materials in Electronics
Volume19
Issue number4
DOIs
Publication statusPublished - 1 Apr 2008

Keywords

  • SILICON

Fingerprint

Dive into the research topics of 'Raman scattering studies of ultrashallow Sb implants in strained Si'. Together they form a unique fingerprint.

Cite this