Abstract
Raman effect in gases can generate an extremely long-living wave of coherence that can lead to the establishment of an almost perfect temporal periodic variation of the medium refractive index. We show theoretically and numerically that the equations, regulate the pulse propagation in hollow-core photonic crystal fibers filled by Raman-active gas, are exactly identical to a classical problem in quantum condensed matter physics – but with the role of space and time reversed – namely an electron in a periodic potential subject to a constant electric field. We are therefore able to infer the existence of Wannier-Stark ladders, Bloch oscillations, and Zener tunneling, phenomena that are normally associated with condensed matter physics, using purely optical means.
Original language | English |
---|---|
Pages (from-to) | 11879-11886 |
Number of pages | 8 |
Journal | Optics Express |
Volume | 23 |
Issue number | 9 |
Early online date | 27 Apr 2015 |
DOIs | |
Publication status | Published - 4 May 2015 |
Fingerprint
Dive into the research topics of 'Raman-induced temporal condensed matter physics in gas-filled photonic crystal fibers'. Together they form a unique fingerprint.Profiles
-
Fabio Biancalana
- School of Engineering & Physical Sciences - Associate Professor
- School of Engineering & Physical Sciences, Institute of Photonics and Quantum Sciences - Associate Professor
Person: Academic (Research & Teaching)
-
Mohammed F Saleh
- School of Engineering & Physical Sciences - Assistant Professor
- School of Engineering & Physical Sciences, Institute of Photonics and Quantum Sciences - Assistant Professor
Person: Academic (Research & Teaching)