Quorum Sensing in Yersinia enterocolitica Controls Swimming and Swarming Motility

Steve Atkinson*, Chien-Yi Chang, R. Elizabeth Sockett, Miguel Cámara, Paul Williams

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    124 Citations (Scopus)


    The Yersinia enterocolitica LuxI homologue YenI directs the synthesis of N-3-(oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL). In a Y. enterocolitica yenI mutant, swimming motility is temporally delayed while swarming motility is abolished. Since both swimming and swarming are flagellum dependent, we purified the flagellin protein from the parent and yenI mutant. Electrophoresis revealed that in contrast to the parent strain, the yenI mutant grown for 17 h at 26°C lacked the 45-kDa flagellin protein FleB. Reverse transcription-PCR indicated that while mutation of yenI had no effect on yenR, flhDC (the motility master regulator) or fliA (the flagellar sigma factor) expression, fleB (the flagellin structural gene) was down-regulated. Since 3-oxo-C6-HSL and C6-HSL did not restore swimming or swarming in the yenI mutant, we reexamined the N-acylhomoserine lactone (AHL) profile of Y. enterocolitica. Using AHL biosensors and mass spectrometry, we identified three additional AHLs synthesized via YenI: N-(3-oxodecanoyl) homoserine lactone, N-(3-oxododecanoyl)homoserine lactone (3-oxo-C12-HSL), and N-(3-oxotetradecanoyl)homoserine lactone. However, none of the long-chain AHLs either alone or in combination with the short-chain AHLs restored swarming or swimming in the yenI mutant. By investigating the transport of radiolabeled 3-oxo-C12-HSL and by introducing an AHL biosensor into the yenI mutant we demonstrate that the inability of exogenous AHLs to restore motility to UK yenI mutant is not related to a lack of AHL uptake. However, both AHL synthesis and motility were restored by complementation of the yenI mutant with a plasmid-borne copy of yenI.

    Original languageEnglish
    Pages (from-to)1451-1461
    Number of pages11
    JournalJournal of Bacteriology
    Issue number4
    Publication statusPublished - Feb 2006

    ASJC Scopus subject areas

    • Applied Microbiology and Biotechnology
    • Immunology


    Dive into the research topics of 'Quorum Sensing in Yersinia enterocolitica Controls Swimming and Swarming Motility'. Together they form a unique fingerprint.

    Cite this