Abstract
We prove a C (1,alpha) partial regularity result for minimizers of variational integrals of the type
J[u] := integral(Omega) f(del u)dx, u : Omega subset of R-n --> R-N,
where the integrand f is strictly quasiconvex and satisfies suitable growth conditions in terms of Young functions.
Original language | English |
---|---|
Pages (from-to) | 255-271 |
Number of pages | 17 |
Journal | Annali di Matematica Pura ed Applicata |
Volume | 192 |
Issue number | 2 |
DOIs | |
Publication status | Published - Apr 2013 |
Keywords
- Quasiconvex
- Young functions
- Partial regularity
- PARTIAL REGULARITY
- HARMONIC APPROXIMATION
- LOWER SEMICONTINUITY
- SUBQUADRATIC GROWTH
- ELLIPTIC-SYSTEMS
- OPTIMAL INTERIOR
- INTEGRALS
- MINIMIZERS
- THEOREM