Quantum Correlations in Optical Angle-Orbital Angular Momentum Variables

Jonathan Leach, Barry Jack, Jacqui Romero, Anand K. Jha, Alison M. Yao, Sonja Franke-Arnold, David G. Ireland, Robert W. Boyd, Stephen M. Barnett, Miles J. Padgett

Research output: Contribution to journalArticle

Abstract

Entanglement of the properties of two separated particles constitutes a fundamental signature of quantum mechanics and is a key resource for quantum information science. We demonstrate strong Einstein, Podolsky, and Rosen correlations between the angular position and orbital angular momentum of two photons created by the nonlinear optical process of spontaneous parametric down-conversion. The discrete nature of orbital angular momentum and the continuous but periodic nature of angular position give rise to a special sort of entanglement between these two variables. The resulting correlations are found to be an order of magnitude stronger than those allowed by the uncertainty principle for independent (nonentangled) particles. Our results suggest that angular position and orbital angular momentum may find important applications in quantum information science.

Original languageEnglish
Pages (from-to)662-665
Number of pages4
JournalScience
Volume329
Issue number5992
DOIs
Publication statusPublished - 6 Aug 2010

Cite this

Leach, J., Jack, B., Romero, J., Jha, A. K., Yao, A. M., Franke-Arnold, S., ... Padgett, M. J. (2010). Quantum Correlations in Optical Angle-Orbital Angular Momentum Variables. Science, 329(5992), 662-665. https://doi.org/10.1126/science.1190523
Leach, Jonathan ; Jack, Barry ; Romero, Jacqui ; Jha, Anand K. ; Yao, Alison M. ; Franke-Arnold, Sonja ; Ireland, David G. ; Boyd, Robert W. ; Barnett, Stephen M. ; Padgett, Miles J. / Quantum Correlations in Optical Angle-Orbital Angular Momentum Variables. In: Science. 2010 ; Vol. 329, No. 5992. pp. 662-665.
@article{dee5641f6159498284a3f186223c5551,
title = "Quantum Correlations in Optical Angle-Orbital Angular Momentum Variables",
abstract = "Entanglement of the properties of two separated particles constitutes a fundamental signature of quantum mechanics and is a key resource for quantum information science. We demonstrate strong Einstein, Podolsky, and Rosen correlations between the angular position and orbital angular momentum of two photons created by the nonlinear optical process of spontaneous parametric down-conversion. The discrete nature of orbital angular momentum and the continuous but periodic nature of angular position give rise to a special sort of entanglement between these two variables. The resulting correlations are found to be an order of magnitude stronger than those allowed by the uncertainty principle for independent (nonentangled) particles. Our results suggest that angular position and orbital angular momentum may find important applications in quantum information science.",
author = "Jonathan Leach and Barry Jack and Jacqui Romero and Jha, {Anand K.} and Yao, {Alison M.} and Sonja Franke-Arnold and Ireland, {David G.} and Boyd, {Robert W.} and Barnett, {Stephen M.} and Padgett, {Miles J.}",
year = "2010",
month = "8",
day = "6",
doi = "10.1126/science.1190523",
language = "English",
volume = "329",
pages = "662--665",
journal = "Science",
issn = "0036-8075",
publisher = "American Association for the Advancement of Science",
number = "5992",

}

Leach, J, Jack, B, Romero, J, Jha, AK, Yao, AM, Franke-Arnold, S, Ireland, DG, Boyd, RW, Barnett, SM & Padgett, MJ 2010, 'Quantum Correlations in Optical Angle-Orbital Angular Momentum Variables', Science, vol. 329, no. 5992, pp. 662-665. https://doi.org/10.1126/science.1190523

Quantum Correlations in Optical Angle-Orbital Angular Momentum Variables. / Leach, Jonathan; Jack, Barry; Romero, Jacqui; Jha, Anand K.; Yao, Alison M.; Franke-Arnold, Sonja; Ireland, David G.; Boyd, Robert W.; Barnett, Stephen M.; Padgett, Miles J.

In: Science, Vol. 329, No. 5992, 06.08.2010, p. 662-665.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Quantum Correlations in Optical Angle-Orbital Angular Momentum Variables

AU - Leach, Jonathan

AU - Jack, Barry

AU - Romero, Jacqui

AU - Jha, Anand K.

AU - Yao, Alison M.

AU - Franke-Arnold, Sonja

AU - Ireland, David G.

AU - Boyd, Robert W.

AU - Barnett, Stephen M.

AU - Padgett, Miles J.

PY - 2010/8/6

Y1 - 2010/8/6

N2 - Entanglement of the properties of two separated particles constitutes a fundamental signature of quantum mechanics and is a key resource for quantum information science. We demonstrate strong Einstein, Podolsky, and Rosen correlations between the angular position and orbital angular momentum of two photons created by the nonlinear optical process of spontaneous parametric down-conversion. The discrete nature of orbital angular momentum and the continuous but periodic nature of angular position give rise to a special sort of entanglement between these two variables. The resulting correlations are found to be an order of magnitude stronger than those allowed by the uncertainty principle for independent (nonentangled) particles. Our results suggest that angular position and orbital angular momentum may find important applications in quantum information science.

AB - Entanglement of the properties of two separated particles constitutes a fundamental signature of quantum mechanics and is a key resource for quantum information science. We demonstrate strong Einstein, Podolsky, and Rosen correlations between the angular position and orbital angular momentum of two photons created by the nonlinear optical process of spontaneous parametric down-conversion. The discrete nature of orbital angular momentum and the continuous but periodic nature of angular position give rise to a special sort of entanglement between these two variables. The resulting correlations are found to be an order of magnitude stronger than those allowed by the uncertainty principle for independent (nonentangled) particles. Our results suggest that angular position and orbital angular momentum may find important applications in quantum information science.

U2 - 10.1126/science.1190523

DO - 10.1126/science.1190523

M3 - Article

C2 - 20689014

VL - 329

SP - 662

EP - 665

JO - Science

JF - Science

SN - 0036-8075

IS - 5992

ER -

Leach J, Jack B, Romero J, Jha AK, Yao AM, Franke-Arnold S et al. Quantum Correlations in Optical Angle-Orbital Angular Momentum Variables. Science. 2010 Aug 6;329(5992):662-665. https://doi.org/10.1126/science.1190523