Quantized Nambu-Poisson manifolds and n-Lie algebras

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)

Abstract

We investigate the geometric interpretation of quantized Nambu-Poisson structures in terms of noncommutative geometries. We describe an extension of the usual axioms of quantization in which classical Nambu-Poisson structures are translated to n-Lie algebras at quantum level. We demonstrate that this generalized procedure matches an extension of Berezin-Toeplitz quantization yielding quantized spheres, hyperboloids, and superspheres. The extended Berezin quantization of spheres is closely related to a deformation quantization of n-Lie algebras as well as the approach based on harmonic analysis. We find an interpretation of Nambu-Heisenberg n-Lie algebras in terms of foliations of Rn by fuzzy spheres, fuzzy hyperboloids, and noncommutative hyperplanes. Some applications to the quantum geometry of branes in M-theory are also briefly discussed. © 2010 American Institute of Physics.

Original languageEnglish
Article number122303
JournalJournal of Mathematical Physics
Volume51
Issue number12
DOIs
Publication statusPublished - 1 Dec 2010

Fingerprint

Dive into the research topics of 'Quantized Nambu-Poisson manifolds and n-Lie algebras'. Together they form a unique fingerprint.

Cite this