Quantifying the Cross-sectoral Intersecting Discrepancies within Multiple Groups Using Latent Class Analysis Towards Fairness

Yingfang Yuan, Chen Kefan, Mehdi Rizvi, Lynne Baillie, Wei Pang*

*Corresponding author for this work

Research output: Working paperPreprint

11 Downloads (Pure)

Abstract

The growing interest in fair AI development is evident. The ‘Leave No One Behind’ initiative urges us to address multiple and intersecting forms of inequality in accessing services, resources, and opportunities, emphasising the significance of fairness in AI. This is particularly relevant as an increasing number of AI tools are applied to decision-making processes, such as resource allocation and service scheme development, across various sectors such as health, energy, and housing. Therefore, exploring joint inequalities in these sectors is significant and valuable for thoroughly understanding overall inequality and unfairness. This research introduces an innovative approach to quantify cross-sectoral intersecting discrepancies among user-defined groups using latent class analysis. These discrepancies can be used to approximate inequality and provide valuable insights to fairness issues. We validate our approach using both proprietary and public datasets, including EVENS and Census 2021 (England \& Wales) datasets, to examine cross-sectoral intersecting discrepancies among different ethnic groups. We also verify the reliability of the quantified discrepancy by conducting a correlation analysis with a government public metric. Our findings reveal significant discrepancies between minority ethnic groups, highlighting the need for targeted interventions in real-world AI applications. Additionally, we demonstrate how the proposed approach can be used to provide insights into the fairness of machine learning.
Original languageEnglish
PublisherarXiv
Publication statusPublished - 11 Jul 2024

Fingerprint

Dive into the research topics of 'Quantifying the Cross-sectoral Intersecting Discrepancies within Multiple Groups Using Latent Class Analysis Towards Fairness'. Together they form a unique fingerprint.

Cite this