TY - JOUR
T1 - Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1 - an enzyme important in the detoxification of furfural during ethanol production
AU - Gutierrez, Tony
AU - Ingram, Lonnie O
AU - Preston, James F
PY - 2006/1/24
Y1 - 2006/1/24
N2 - Furfural, an inhibitor of ethanol production from hemicellulose acid hydrolysates, is reductively detoxified to furfuryl alcohol by the ethanologenic bacterium Escherichia coli strain LYO1. Furfural reductase was purified 106-fold from this bacterium to approximately 50% homogeneity. It has a native molecular mass of 135 kDa, determined by gel filtration, and subunit molecular mass of approximately 68 kDa, determined by denaturing gel electrophoresis, indicating the holoenzyme is a dimer of two similar if not identical subunits. The enzyme shows strong activity from pH 4 to 8 (optimum pH 7.0), relatively high temperature tolerance (50-55 degrees C), and an apparent Km and Vmax for furfural of 1.5x10(-4)M and 28.5 micromol/min/mg of protein, respectively. It catalyzes the essentially irreversible reduction of furfural with NADPH, is specific for NADPH as cofactor, and is relatively specific for the reduction of furfural and benzaldehyde; 2-acetylfuran, xylose, and glucose were not reduced, while acetaldehyde was reduced at a rate 25-fold lower than furfural. This is the first description of a furfural reductase which, based upon size and substrate specificity, appears to represent a new type of alcohol-aldehyde oxido-reductase. The conversion of relatively toxic furfural to less toxic furfuryl alcohol suggests a beneficial role for this enzyme in mitigating furfural toxicity encountered during ethanol production from lignocellulosic biomass.
AB - Furfural, an inhibitor of ethanol production from hemicellulose acid hydrolysates, is reductively detoxified to furfuryl alcohol by the ethanologenic bacterium Escherichia coli strain LYO1. Furfural reductase was purified 106-fold from this bacterium to approximately 50% homogeneity. It has a native molecular mass of 135 kDa, determined by gel filtration, and subunit molecular mass of approximately 68 kDa, determined by denaturing gel electrophoresis, indicating the holoenzyme is a dimer of two similar if not identical subunits. The enzyme shows strong activity from pH 4 to 8 (optimum pH 7.0), relatively high temperature tolerance (50-55 degrees C), and an apparent Km and Vmax for furfural of 1.5x10(-4)M and 28.5 micromol/min/mg of protein, respectively. It catalyzes the essentially irreversible reduction of furfural with NADPH, is specific for NADPH as cofactor, and is relatively specific for the reduction of furfural and benzaldehyde; 2-acetylfuran, xylose, and glucose were not reduced, while acetaldehyde was reduced at a rate 25-fold lower than furfural. This is the first description of a furfural reductase which, based upon size and substrate specificity, appears to represent a new type of alcohol-aldehyde oxido-reductase. The conversion of relatively toxic furfural to less toxic furfuryl alcohol suggests a beneficial role for this enzyme in mitigating furfural toxicity encountered during ethanol production from lignocellulosic biomass.
U2 - 10.1016/j.jbiotec.2005.07.003
DO - 10.1016/j.jbiotec.2005.07.003
M3 - Article
C2 - 16111779
SN - 0168-1656
VL - 121
SP - 154
EP - 164
JO - Journal of Biotechnology
JF - Journal of Biotechnology
IS - 2
ER -