Preparation of fiber optics for the delivery of high-energy high-beam-quality Nd:YAG laser pulses

Andreas Kuhn, Paul French, Duncan P. Hand, Ian J. Blewett, Mark Richmond, Julian David Clayton Jones

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

Recent improvements in design have made it possible to build Nd:YAG lasers with both high pulse energy and high beam quality. These lasers are particularly suited for percussion drilling of holes of as much as 1-mm diameter thick (a few millimeters) metal parts. An example application is the production of cooling holes in aeroengine components for which 1-ms duration, 30-J energy laser pulses produce holes of sufficient quality much more efficiently than with a laser trepanning process. Fiber optic delivery of the laser beam would be advantageous, particularly when one is processing complex three-dimensional structures. However, lasers for percussion drilling are available only with conventional bulk-optic beam delivery because of laser-induced damage problems with the small-diameter (approximately 200-400-µm) fibers that would be required for preserving necessary beam quality. We report measurements of beam degradation in step-index optical fibers with an input beam quality corresponding to an M2 of 22. We then show that the laser-induced damage threshold of 400-µm core-diameter optical fibers can be increased significantly by a CO2 laser treatment step following the mechanical polishing routine. This increase in laser-induced damage threshold is sufficient to propagate 25-J, 1-ms laser pulses with a 400-µm core-diameter optical fiber and an output M2 of 31.

Original languageEnglish
Pages (from-to)6136-6143
Number of pages8
JournalApplied Optics
Volume39
Issue number33
DOIs
Publication statusPublished - 20 Nov 2000

Fingerprint

Dive into the research topics of 'Preparation of fiber optics for the delivery of high-energy high-beam-quality Nd:YAG laser pulses'. Together they form a unique fingerprint.

Cite this