Prediction of voltage distribution using deep learning and identified key smart meter locations

Maizura Mokhtar*, Valentin Robu, David Flynn, Ciaran Higgins, Jim Whyte, Caroline Loughran, Fiona Fulton

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
63 Downloads (Pure)

Abstract

The energy landscape for the Low-Voltage (LV) networks is undergoing rapid changes. These changes are driven by the increased penetration of distributed Low Carbon Technologies, both on the generation side (i.e. adoption of micro-renewables) and demand side (i.e. electric vehicle charging). The previously passive ‘fit-and-forget’ approach to LV network management is becoming increasing inefficient to ensure its effective operation. A more agile approach to operation and planning is needed, that includes pro-active prediction and mitigation of risks to local sub-networks (such as risk of voltage deviations out of legal limits). The mass rollout of smart meters (SMs) and advances in metering infrastructure holds the promise for smarter network management. However, many of the proposed methods require full observability, yet the expectation of being able to collect complete, error free data from every smart meter is unrealistic in operational reality. Furthermore, the smart meter (SM) roll-out has encountered significant issues, with the current voluntary nature of installation in the UK and in many other countries resulting in low-likelihood of full SM coverage for all LV networks. Even with a comprehensive SM roll-out privacy restrictions, constrain data availability from meters. To address these issues, this paper proposes the use of a Deep Learning Neural Network architecture to predict the voltage distribution with partial SM coverage on actual network operator LV circuits. The results show that SM measurements from key locations are sufficient for effective prediction of the voltage distribution, even without the use of the high granularity personal power demand data from individual customers.

Original languageEnglish
Article number100103
JournalEnergy and AI
Volume6
Early online date5 Aug 2021
DOIs
Publication statusPublished - Dec 2021

Keywords

  • Analytic methods in power networks
  • Big Data Analytics
  • Deep neural learning
  • Distribution network operation
  • Privacy-preserving data analysis
  • Smart meters
  • Voltage prediction

ASJC Scopus subject areas

  • Artificial Intelligence
  • General Energy
  • Engineering (miscellaneous)

Fingerprint

Dive into the research topics of 'Prediction of voltage distribution using deep learning and identified key smart meter locations'. Together they form a unique fingerprint.

Cite this