Abstract
Hypothesis
Underground hydrogen (H2) storage is a potentially viable solution for large-scale cyclic H2 storage; however, the behavior of H2 at subsurface pressure and temperature conditions is poorly known. This work investigates if the pore-scale displacement processes in H2-brine systems in a porous sandstone can be sufficiently well defined to enable effective and economic storage operations. In particular, this study investigates trapping, dissolution, and wettability of H2-brine systems at the pore-scale, at conditions that are realistic for subsurface H2 storage.
Experiments
We have performed in situ X-ray imaging during a flow experiment to investigate pore-scale processes during H2 injection and displacement in a brine saturated Bentheimer sandstone sample at temperature and pressure conditions representative of underground reservoirs. Two injection schemes were followed for imbibition: displacement of H2 with H2-equilibrated brine and with non-H2-equilibrated brine. The results from the two cycles were compared with each other.
Findings
The sandstone was found to be wetting to the brine and non-wetting to H2 after both displacement cycles, with average contact angles of 54° and 53°, for H2-equilibrated and non-H2-equilibrated brine, respectively. We also found a higher recovery of H2 (43.1%) when displaced with non-H2-equilibrated brine compared to that of H2-equilibrated brine (31.6%), indicating potential dissolution of H2 in the unequilibrated, imbibing brine at reservoir conditions. Our results suggest that underground H2 storage may indeed be a suitable strategy for energy storage, but considerable further research is needed to fully comprehend the pore-scale interactions at reservoir conditions.
Underground hydrogen (H2) storage is a potentially viable solution for large-scale cyclic H2 storage; however, the behavior of H2 at subsurface pressure and temperature conditions is poorly known. This work investigates if the pore-scale displacement processes in H2-brine systems in a porous sandstone can be sufficiently well defined to enable effective and economic storage operations. In particular, this study investigates trapping, dissolution, and wettability of H2-brine systems at the pore-scale, at conditions that are realistic for subsurface H2 storage.
Experiments
We have performed in situ X-ray imaging during a flow experiment to investigate pore-scale processes during H2 injection and displacement in a brine saturated Bentheimer sandstone sample at temperature and pressure conditions representative of underground reservoirs. Two injection schemes were followed for imbibition: displacement of H2 with H2-equilibrated brine and with non-H2-equilibrated brine. The results from the two cycles were compared with each other.
Findings
The sandstone was found to be wetting to the brine and non-wetting to H2 after both displacement cycles, with average contact angles of 54° and 53°, for H2-equilibrated and non-H2-equilibrated brine, respectively. We also found a higher recovery of H2 (43.1%) when displaced with non-H2-equilibrated brine compared to that of H2-equilibrated brine (31.6%), indicating potential dissolution of H2 in the unequilibrated, imbibing brine at reservoir conditions. Our results suggest that underground H2 storage may indeed be a suitable strategy for energy storage, but considerable further research is needed to fully comprehend the pore-scale interactions at reservoir conditions.
Original language | English |
---|---|
Pages (from-to) | 316-325 |
Number of pages | 10 |
Journal | Journal of Colloid and Interface Science |
Volume | 629 |
Issue number | Part B |
Early online date | 20 Sept 2022 |
DOIs | |
Publication status | Published - Jan 2023 |
Keywords
- 3D X-ray visualization
- Hydrogen wettability
- In situ flow experiment
- Underground hydrogen storage
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Biomaterials
- Surfaces, Coatings and Films
- Colloid and Surface Chemistry