Abstract
Pore Scale modeling in carbonate reservoir is challenging and important for getting an accurate reservoir characterization, enhanced oil recovery (EOR) and reservoir management. In this case, 3D pore-scale modeling for immiscible and near miscible three phase flow in gas and water alternating gas (WAG) flooding of carbonate reservoir. It is useful to predict and guide SCAL based to access effects on pore-scale and EOR of field scale.
A Research has been started in carbonate reservoir with water alternating gas (WAG) injection activity which has various heterogeneity conditions such as: porosity, permeability, relative permeability, cementation, saturation exponent, rock types, fluid types/contacts, interfacial tension, wettability and capillary pressure. Inaccurate to characterize and model of these reservoir properties and fluid will lead to give high uncertainty of reservoir characterization, minimum oil recovery and reservoir management concern.
The reliable pore-scale modeling approach is needed by the data integration of various sources such as those from petrophysical, reservoir, geology and geophysical data. Research and utilize of X-ray CT in micro and nano to capture the 3D network structure of representative reservoir rock properties. In prediction and guide SCAL based; investigation the effects (sensitivity) of interfacial tensions, contact angles, wettability and spreading coefficient into miscibility on the oil layers between gas and water in a fully interconnected three-phase flow pore-network model. Utilize thermodynamic criteria for rock properties and oil layers, which affect the oil relative permeability at low oil saturation for accurate prediction of residual oil and maximize oil recovery.
In 3D Pore scale modeling workflow; validation with SCAL-lab, up scaling to well logs and field with utilizing logs, formation pressure/sampling/testing and combination with structural data of geology-seismic are necessary in field scale modeling approach. It will provide reliable rock type/properties for a reservoir dynamic model. The special approach needs to be developed and used in simulation model for getting appropriate relative-permeability, rock type/properties and water saturation in Gas and Water Alternating Gas (WAG) flooding of carbonate reservoirs. Thus it can give an accurate and robust of reservoir characterization, maximize oil recovery and reservoir management.
A Research has been started in carbonate reservoir with water alternating gas (WAG) injection activity which has various heterogeneity conditions such as: porosity, permeability, relative permeability, cementation, saturation exponent, rock types, fluid types/contacts, interfacial tension, wettability and capillary pressure. Inaccurate to characterize and model of these reservoir properties and fluid will lead to give high uncertainty of reservoir characterization, minimum oil recovery and reservoir management concern.
The reliable pore-scale modeling approach is needed by the data integration of various sources such as those from petrophysical, reservoir, geology and geophysical data. Research and utilize of X-ray CT in micro and nano to capture the 3D network structure of representative reservoir rock properties. In prediction and guide SCAL based; investigation the effects (sensitivity) of interfacial tensions, contact angles, wettability and spreading coefficient into miscibility on the oil layers between gas and water in a fully interconnected three-phase flow pore-network model. Utilize thermodynamic criteria for rock properties and oil layers, which affect the oil relative permeability at low oil saturation for accurate prediction of residual oil and maximize oil recovery.
In 3D Pore scale modeling workflow; validation with SCAL-lab, up scaling to well logs and field with utilizing logs, formation pressure/sampling/testing and combination with structural data of geology-seismic are necessary in field scale modeling approach. It will provide reliable rock type/properties for a reservoir dynamic model. The special approach needs to be developed and used in simulation model for getting appropriate relative-permeability, rock type/properties and water saturation in Gas and Water Alternating Gas (WAG) flooding of carbonate reservoirs. Thus it can give an accurate and robust of reservoir characterization, maximize oil recovery and reservoir management.
Original language | English |
---|---|
Title of host publication | International Petroleum Technology Conference 2014 (IPTC 2014) |
Subtitle of host publication | Innovation and collaboration: keys to affordabel energy |
Place of Publication | Richardson, Texas, USA |
Publisher | International Petroleum Technology Conference |
Pages | 894-917 |
Number of pages | 24 |
Volume | 1 |
ISBN (Electronic) | 9781613993712 |
ISBN (Print) | 9781634398350 |
DOIs | |
Publication status | Published - 2014 |
Event | 8th International Petroleum Technology Conference 2014 - Kuala Lumpur, Malaysia Duration: 10 Dec 2014 → 12 Dec 2014 |
Conference
Conference | 8th International Petroleum Technology Conference 2014 |
---|---|
Abbreviated title | IPTC 2014 |
Country/Territory | Malaysia |
City | Kuala Lumpur |
Period | 10/12/14 → 12/12/14 |