TY - JOUR
T1 - Pollution studies for high order isogeometric analysis and finite element for acoustic problems
AU - Diwan, Ganesh C.
AU - Mohamed, M. Shadi
PY - 2019/6/15
Y1 - 2019/6/15
N2 - It is well known that Galerkin finite element methods suffer from pollution error when solving wave problems. To reduce the pollution impact on the solution different approaches were proposed to enrich the finite element method with wave-like functions so that the exact wavenumber is incorporated into the finite element approximation space. Solving wave problems with isogeometric analysis was also investigated in the literature where the superior behaviour of isogeometric analysis due to higher continuity in the underlying basis has been studied. Recently, a plane wave enriched isogeometric analysis was introduced for acoustic problems. However, it remains unquantified the impact of these different approaches on the pollution or how they perform compared to each other. In this work, we show that isogeometric analysis outperforms finite element method in dealing with pollution. We observe similar behaviour when both the methods are enriched with plane waves. Using higher order polynomials with fewer enrichment functions seems to improve the pollution compared to lower order polynomials with more functions. However, the latter still leads to smaller errors using similar number of degrees of freedom. In conclusion, we propose that partition of unity isogeometric analysis can be an efficient tool for wave problems as enrichment eliminates the need for domain re-meshing at higher frequencies and also due to its ability to capture the exact geometry even on coarse meshes as well as its improved pollution behaviour.
AB - It is well known that Galerkin finite element methods suffer from pollution error when solving wave problems. To reduce the pollution impact on the solution different approaches were proposed to enrich the finite element method with wave-like functions so that the exact wavenumber is incorporated into the finite element approximation space. Solving wave problems with isogeometric analysis was also investigated in the literature where the superior behaviour of isogeometric analysis due to higher continuity in the underlying basis has been studied. Recently, a plane wave enriched isogeometric analysis was introduced for acoustic problems. However, it remains unquantified the impact of these different approaches on the pollution or how they perform compared to each other. In this work, we show that isogeometric analysis outperforms finite element method in dealing with pollution. We observe similar behaviour when both the methods are enriched with plane waves. Using higher order polynomials with fewer enrichment functions seems to improve the pollution compared to lower order polynomials with more functions. However, the latter still leads to smaller errors using similar number of degrees of freedom. In conclusion, we propose that partition of unity isogeometric analysis can be an efficient tool for wave problems as enrichment eliminates the need for domain re-meshing at higher frequencies and also due to its ability to capture the exact geometry even on coarse meshes as well as its improved pollution behaviour.
UR - https://www.scopus.com/pages/publications/85063630772
U2 - 10.1016/j.cma.2019.03.031
DO - 10.1016/j.cma.2019.03.031
M3 - Article
SN - 0045-7825
VL - 350
SP - 701
EP - 718
JO - Computer Methods in Applied Mechanics and Engineering
JF - Computer Methods in Applied Mechanics and Engineering
ER -