Abstract
For vehicle autonomy, driver assistance and situational awareness, it is necessary to operate at day and night, and in all weather conditions. In particular, long wave infrared (LWIR) sensors that receive predominantly emitted radiation have the capability to operate at night as well as during the day. In this work, we employ a polarised LWIR (POL-LWIR) camera to acquire data from a mobile vehicle, to compare and contrast four different convolutional neural network (CNN) configurations to detect other vehicles in video sequences. We evaluate two distinct and promising approaches, two-stage detection (Faster-RCNN) and one-stage detection (SSD), in four different configurations. We also employ two different image decompositions: the first based on the polarisation ellipse and the second on the Stokes parameters themselves. To evaluate our approach, the experimental trials were quantified by mean average precision (mAP) and processing time, showing a clear trade-off between the two factors. For example, the best mAP result of 80.94 % was achieved using Faster-RCNN, but at a frame rate of 6.4 fps. In contrast, MobileNet SSD achieved only 64.51 % mAP, but at 53.4 fps.
Original language | English |
---|---|
Title of host publication | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) |
Publisher | IEEE |
Pages | 1328-1334 |
Number of pages | 7 |
ISBN (Electronic) | 9781538661000 |
DOIs | |
Publication status | Published - 17 Dec 2018 |
Event | 14th IEEE Workshop on Perception Beyond the Visible Spectrum in conjunction with CVPR 2018 - Salt Lake City, United States Duration: 18 Jun 2018 → 18 Jun 2018 |
Workshop
Workshop | 14th IEEE Workshop on Perception Beyond the Visible Spectrum in conjunction with CVPR 2018 |
---|---|
Abbreviated title | PBVS 2018 |
Country/Territory | United States |
City | Salt Lake City |
Period | 18/06/18 → 18/06/18 |