Pilot study on building-integrated PV: Technical assessment and economic analysis

Mohammed A. Arnaout, Yun Ii Go, Alkaff Saqaff

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Building-integrated photovoltaics (BIPV) is an innovative green solution that incorporated energy generation into the building façade with modification on the building material or architectural structure. It is a clean and reliable solution that conserves the aesthetical value of the architecture and has the potential to enhance the building's energy efficiency. Malaysia's tropical location has a high solar energy potential to be exploited, and BIPV is a very innovative aspect of technology to employ the available energy. Heriot-Watt University Malaysia (HWUM) has a unique roof design that could be utilized as an application of the BIPV system to generate electricity, reducing the carbon footprint of the facility. Eight BIPV systems of different PV technologies and module types and with capacities of 411.8 to 1085.6 kW were proposed for the building. The environmental plugin software has been integrated with a building geometry modelling tool to visualize and estimate the energy potential from the roof surface in a 3D modelling software. Additionally, detailed system simulations are conducted using PVSyst software, where results and performance parameters are analysed. The roof surface is shown to provide great energy potential and studied scenarios generated between 548 and 1451 MWh yearly with PR range from 78% to 85%. C-Si scenarios offer the best economical profitability with payback period of 4.4 to 6.3 years. The recommended scenario has a size of 1085.5 kW and utilizes thin-film CdTe PV modules. The system generates 1415 MWh annually with a performance ratio of 84.9%, which saves 62.8% of the electricity bill and has an estimated cost of 901 000 USD. Installation of the proposed system should preserve the aesthetical value of the building's roof, satisfy BIPV rules, and most importantly, conserves energy, making the building greener.

Original languageEnglish
Pages (from-to)9538-9559
Number of pages22
JournalInternational Journal of Energy Research
Volume44
Issue number12
Early online date3 Mar 2020
DOIs
Publication statusPublished - 10 Oct 2020

Keywords

  • bendable PV
  • BIPV
  • curved roof
  • energy yield

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology

Fingerprint Dive into the research topics of 'Pilot study on building-integrated PV: Technical assessment and economic analysis'. Together they form a unique fingerprint.

Cite this