Physical and chemical behavior of flowing endothermic jet fuels

Thomas Ward

Research output: ThesisDoctoral Thesis


Hydrocarbon fuels have been used as cooling media for aircraft jet engines for decades. However, modern aircraft engines are reaching a practical heat transfer limit beyond which the convective heat transfer provided by fuels is no longer adequate. One solution is to use an endothermic fuel that absorbs heat through a series of pyrolytic chemical reactions. However, many of the physical and chemical processes involved in endothermic fuel degradation are not well understood. The purpose of this dissertation is to study different characteristics of endothermic fuels using experiments and computational models. In the first section, data from three flow experiments using heated Jet-A fuel and additives were analyzed (with the aid of CFD calculations) to study the effects of treated surfaces on surface deposition. Surface deposition is the primary impediment in creating an operational endothermic fuel heat exchanger system, because deposits can obstruct fuel pathways causing a catastrophic system failure. As heated fuel flows through a fuel system, trace species within the fuel react with dissolved O2 to form surface deposits. At relatively higher fuel temperatures, the dissolved O2 is depleted, and pyrolytic chemistry becomes dominant (at temperatures greater than ˜500 °C). In the first experiment, the dissolved O2 consumption of heated fuel was measured on different surface types over a range of temperatures. It is found that use of treated tubes significantly delays oxidation of the fuel. In the second experiment, the treated length of tubing was progressively increased, which varied the characteristics of the thermal-oxidative deposits formed. In the third experiment, pyrolytic surface deposition in either fully treated or untreated tubes is studied. It is found that the treated surface significantly reduced the formation of surface deposits for both thermal oxidative and pyrolytic degradation mechanisms. Moreover, it is found that the chemical reactions resulting in pyrolytic deposition on the untreated surface are more sensitive to pressure level than those causing pyrolytic deposition on the treated surface. The second section describes the development of a two-dimensional computational model of the heat and mass transport associated with a flowing fuel using a unique global chemical kinetics model. This model calculates the changing flow properties of a supercritical reacting fuel by use of experimentally derived proportional product distributions. The third section studies the effects of pressure on flowing; mildly-cracked, supercritical n-decane. The experimental results are studied with the aid of the computational model described in section 2, expanded to deal with variable pressures. The experiments indicate that increasing pressure enhances the processes in which n-decane converts to (C5--C9) n-alkane products instead of decomposing into lower molecular weight products (C1--C4): Increasing pressure also increases the overall conversion rate of supercritical n-decane flowing through a reactor. Computational modeling of the experiment shows how the flow properties are influenced by pressure.
Original languageEnglish
Awarding Institution
  • University of Dayton
  • Ervin, Jamie S., Supervisor, External person
Thesis sponsors
Award date20 Dec 2003
Place of PublicationDayton, OH USA
Print ISBNs9780496558490
Publication statusPublished - 2003


Dive into the research topics of 'Physical and chemical behavior of flowing endothermic jet fuels'. Together they form a unique fingerprint.

Cite this