Photon-sparse microscopy: visible light imaging using infrared illumination

Reuben S. Aspden, Nathan R Gemmell, Peter A. Morris, Daniel S Tasca, Lena Mertens, Michael George Tanner, Robert Andrew Kirkwood, Alessandro Ruggeri, Alberto Tosi, Robert W Boyd, Gerald Stuart Buller, Robert H Hadfield, Miles J Padgett

Research output: Contribution to journalArticlepeer-review

113 Citations (Scopus)
93 Downloads (Pure)


Conventional imaging systems rely upon illumination light that is scattered or transmitted by the object and subsequently imaged. Ghost-imaging systems based on parametric down-conversion use twin beams of position-correlated signal and idler photons. One beam illuminates an object while the image information is recovered from a second beam that has never interacted with the object. In this Letter, we report on a camera-based ghost imaging system where the correlated photons have significantly different wavelengths. Infrared photons at 1550 nm wavelength illuminate the object and are detected by an InGaAs/InP single-photon avalanche diode. The image data are recorded from the coincidently detected, position-correlated, visible photons at a wavelength of 460 nm using a highly efficient, low-noise, photon-counting camera. The efficient transfer of the image information from infrared illumination to visible detection wavelengths and the ability to count single photons allows the acquisition of an image while illuminating the object with an optical power density of only 100  pJ cm−2 s−1. This wavelength-transforming ghost-imaging technique has potential for the imaging of light-sensitive specimens or where covert operation is desired.
Original languageEnglish
Pages (from-to)1049-1052
Number of pages4
Issue number12
Publication statusPublished - Dec 2015


Dive into the research topics of 'Photon-sparse microscopy: visible light imaging using infrared illumination'. Together they form a unique fingerprint.

Cite this