Abstract
Conventional imaging systems rely upon illumination light that is scattered or transmitted by the object and subsequently imaged. Ghost-imaging systems based on parametric down-conversion use twin beams of position-correlated signal and idler photons. One beam illuminates an object while the image information is recovered from a second beam that has never interacted with the object. In this Letter, we report on a camera-based ghost imaging system where the correlated photons have significantly different wavelengths. Infrared photons at 1550 nm wavelength illuminate the object and are detected by an InGaAs/InP single-photon avalanche diode. The image data are recorded from the coincidently detected, position-correlated, visible photons at a wavelength of 460 nm using a highly efficient, low-noise, photon-counting camera. The efficient transfer of the image information from infrared illumination to visible detection wavelengths and the ability to count single photons allows the acquisition of an image while illuminating the object with an optical power density of only 100 pJ cm−2 s−1. This wavelength-transforming ghost-imaging technique has potential for the imaging of light-sensitive specimens or where covert operation is desired.
Original language | English |
---|---|
Pages (from-to) | 1049-1052 |
Number of pages | 4 |
Journal | Optica |
Volume | 2 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2015 |
Fingerprint
Dive into the research topics of 'Photon-sparse microscopy: visible light imaging using infrared illumination'. Together they form a unique fingerprint.Profiles
-
Gerald S. Buller
- School of Engineering & Physical Sciences, Institute of Photonics and Quantum Sciences - Professor
- School of Engineering & Physical Sciences - Professor
Person: Academic (Research & Teaching)
-
Michael George Tanner
- School of Engineering & Physical Sciences - Associate Professor
- School of Engineering & Physical Sciences, Institute of Photonics and Quantum Sciences - Associate Professor
Person: Academic (Research & Teaching)