Photolithographic nanoseeding method for selective synthesis of metal-catalysed nanostructures

Jose Marques-Hueso, Jonathan Andrew Scott Morton, Xiangfu Wang, E. Bertran-Serra, Marc Phillipe Yves Desmulliez

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
19 Downloads (Pure)


In this work we present a general method for the selective synthesis by photolithography of localised nanostructures in planar geometries. The methodology relies on the previous concept of photo-patternable metallic nanoparticle (NP)/polymer nanocomposites, which can provide a range of NP sizes, polydispersity and densities. First, a photoresist containing metallic ions is patterned by photolithography. Silver NPs are synthesised in situ after the exposure and development of the patterned thin film via the thermal-induced reduction of ions embedded in its structure. Gentle plasma ashing is used to selectively remove the polymer, which leaves NPs on the patterned areas. These NPs are used as seeds for subsequent processes. In order to demonstrate the flexibility of the method, its use to selectively produce localised nanostructures through different processes is shown here. Following a top-down approach, high aspect-ratio silicon nanograss has been produced by reactive ion etching and masking by the NPs. In a bottom-up approach, 280 nm copper clusters have been selectively grown in arrays. This method can be easily extrapolated to other metals and it provides a quick way to selectively generate hierarchical nanostructures in large planar areas that can be used for different applications, such as the fabrication of nanostructured sensor arrays.

Original languageEnglish
Article number015302
Issue number1
Early online date30 Oct 2018
Publication statusPublished - 4 Jan 2019


  • nanocomposite
  • nanoseeding
  • photopatterning
  • selective synthesis
  • silicon nanotips
  • silver nanoparticle

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Photolithographic nanoseeding method for selective synthesis of metal-catalysed nanostructures'. Together they form a unique fingerprint.

Cite this