TY - JOUR
T1 - Phonon coupling versus pure dephasing in the photon statistics of cooperative emitters
AU - Wiercinski, Julian
AU - Gauger, Erik M.
AU - Cygorek, Moritz
N1 - Funding Information:
E.M.G. and M.C. acknowledge support from UK EPSRC (Grant No. EP/T01377X/1).
Publisher Copyright:
© 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
PY - 2023/3/14
Y1 - 2023/3/14
N2 - Realizing scalable quantum networks requires a meticulous level of understanding and mitigating the deleterious effects of decoherence. Many quantum device platforms feature multiple decoherence mechanisms, often with a dominant mechanism seemingly fully masking others. In this paper, we show how access to weaker dephasing mechanisms can nevertheless be obtained for optically active qubits by performing two-photon coincidence measurements. To this end we theoretically investigate the impact of different decoherence mechanisms on cooperatively emitting quantum dots. Focusing on the typically dominant deformation-potential coupling to longitudinal acoustic phonons and typically much less severe additional sources of pure dephasing, we employ a numerically exact method to show that these mechanisms lead to very different two-photon coincidence signals. Moreover, surprisingly, the impact of the strongly coupled phonon environment is weak and leads to long-lived coherences. We trace this back to the superohmic nature of the deformation-potential coupling causing interemitter coherences to converge to a nonzero value on a short timescale, whereas pure dephasing contributions cause a complete decay of coherence over longer times. Our approach provides a practical means of investigating decoherence processes on different timescales in solid-state emitters, and thus contributes to understanding and possibly eliminating their detrimental influences.
AB - Realizing scalable quantum networks requires a meticulous level of understanding and mitigating the deleterious effects of decoherence. Many quantum device platforms feature multiple decoherence mechanisms, often with a dominant mechanism seemingly fully masking others. In this paper, we show how access to weaker dephasing mechanisms can nevertheless be obtained for optically active qubits by performing two-photon coincidence measurements. To this end we theoretically investigate the impact of different decoherence mechanisms on cooperatively emitting quantum dots. Focusing on the typically dominant deformation-potential coupling to longitudinal acoustic phonons and typically much less severe additional sources of pure dephasing, we employ a numerically exact method to show that these mechanisms lead to very different two-photon coincidence signals. Moreover, surprisingly, the impact of the strongly coupled phonon environment is weak and leads to long-lived coherences. We trace this back to the superohmic nature of the deformation-potential coupling causing interemitter coherences to converge to a nonzero value on a short timescale, whereas pure dephasing contributions cause a complete decay of coherence over longer times. Our approach provides a practical means of investigating decoherence processes on different timescales in solid-state emitters, and thus contributes to understanding and possibly eliminating their detrimental influences.
KW - quant-ph
UR - http://www.scopus.com/inward/record.url?scp=85151392885&partnerID=8YFLogxK
U2 - 10.1103/PhysRevResearch.5.013176
DO - 10.1103/PhysRevResearch.5.013176
M3 - Article
SN - 2643-1564
VL - 5
JO - Physical Review Research
JF - Physical Review Research
IS - 1
M1 - 013176
ER -