Abstract
This paper introduces a simple yet efficient method, PedView, for pedestrian collision warning in Advanced Driver Assistance Systems (ADAS). In contrast to existing approaches that rely on LiDAR and stereo cameras for pedestrian-vehicle distance calculation, our proposed PedView stands out in three key aspects. Firstly, it leverages a forward-looking monocular camera for 3D pedestrian detection, particularly suitable for resource-limited environments like dealer-installed ADAS. Secondly, PedView goes beyond conventional methods, solely utilizing distance and car speed for collision prediction. Instead, it takes an end-to-end approach by incorporating pedestrian location and intent derived from our proposed 3D detector and fuzzy rules. This integration results in a significant improvement in prediction accuracy. Lastly, extensive experiments conducted on two datasets demonstrate the efficiency of PedView, showcasing its superior performance compared to the discrete conditional rules method (DCR) (Precision 0.937 vs. 0.844 and Recall 0.835 vs. 0.746). These results highlight PedView’s robustness across various real-world scenarios.
Original language | English |
---|---|
Title of host publication | iWOAR '23: Proceedings of the 8th international Workshop on Sensor-Based Activity Recognition and Artificial Intelligence |
Publisher | Association for Computing Machinery |
ISBN (Electronic) | 9798400708169 |
DOIs | |
Publication status | Published - 11 Oct 2023 |
Keywords
- 3D Object Detection
- Autonomous
- Collision Prediction
- Fuzzy Control
- Pedestrian Detection
ASJC Scopus subject areas
- Software
- Human-Computer Interaction
- Computer Vision and Pattern Recognition
- Computer Networks and Communications