TY - JOUR
T1 - Parameter estimation of an induction machine using advanced particle swarm optimisation algorithms
AU - Huynh, D. C.
AU - Dunnigan, M. W.
PY - 2010/11
Y1 - 2010/11
N2 - This study proposes a new application of two advanced particle swarm optimisation (PSO) algorithms for parameter estimation of an induction machine (IM). The inertia weight, cognitive and social parameters and two independent random sequences are the main parameters of the standard PSO algorithm which affect the search characteristics, convergence capability and solution quality in a particular application. Two advanced PSO algorithms, known as the dynamic particle swarm optimisation (dynamic PSO) and chaos PSO algorithms modify those parameters to improve the performance of the standard PSO algorithm. The algorithms use the measurements of the three-phase stator currents, voltages and the speed of the IM as the inputs to the parameter estimator. The experimental results obtained compare the estimated parameters with the IM parameters achieved using traditional tests such as the dc, no-load and locked-rotor tests. There is also a comparison of the solution quality between a genetic algorithm (GA), standard PSO, dynamic PSO and chaos PSO algorithms. The results show that the dynamic PSO and chaos PSO algorithms are better than the standard PSO algorithm and GA for parameter estimation of the IM. © 2010 The Institution of Engineering and Technology.
AB - This study proposes a new application of two advanced particle swarm optimisation (PSO) algorithms for parameter estimation of an induction machine (IM). The inertia weight, cognitive and social parameters and two independent random sequences are the main parameters of the standard PSO algorithm which affect the search characteristics, convergence capability and solution quality in a particular application. Two advanced PSO algorithms, known as the dynamic particle swarm optimisation (dynamic PSO) and chaos PSO algorithms modify those parameters to improve the performance of the standard PSO algorithm. The algorithms use the measurements of the three-phase stator currents, voltages and the speed of the IM as the inputs to the parameter estimator. The experimental results obtained compare the estimated parameters with the IM parameters achieved using traditional tests such as the dc, no-load and locked-rotor tests. There is also a comparison of the solution quality between a genetic algorithm (GA), standard PSO, dynamic PSO and chaos PSO algorithms. The results show that the dynamic PSO and chaos PSO algorithms are better than the standard PSO algorithm and GA for parameter estimation of the IM. © 2010 The Institution of Engineering and Technology.
UR - http://www.scopus.com/inward/record.url?scp=78649379417&partnerID=8YFLogxK
U2 - 10.1049/iet-epa.2009.0296
DO - 10.1049/iet-epa.2009.0296
M3 - Article
SN - 1751-8660
VL - 4
SP - 748
EP - 760
JO - IET Electric Power Applications
JF - IET Electric Power Applications
IS - 9
ER -