Overcoming Noise in Entanglement Distribution

Sebastian Ecker, Frédéric Bouchard, Lukas Bulla, Florian Brandt, Oskar Kohout, Fabian Steinlechner, Robert Fickler, Mehul Malik, Yelena Guryanova, Rupert Ursin, Marcus Huber

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Noise can be considered the natural enemy of quantum information. An often implied benefit of high-dimensional entanglement is its increased resilience to noise. However, manifesting this potential in an experimentally meaningful fashion is challenging and has never been done before. In infinite dimensional spaces, discretization is inevitable and renders the effective dimension of quantum states a tunable parameter. Owing to advances in experimental techniques and theoretical tools, we demonstrate an increased resistance to noise by identifying two pathways to exploit high-dimensional entangled states. Our study is based on two separate experiments utilizing canonical spatiotemporal properties of entangled photon pairs. Following these different pathways to noise resilience, we are able to certify entanglement in the photonic orbital-angular-momentum and energy-time degrees of freedom up to noise conditions corresponding to a noise fraction of 72% and 92%, respectively. Our work paves the way toward practical quantum communication systems that are able to surpass current noise and distance limitations, while not compromising on potential device independence.

Original languageEnglish
Article number041042
JournalPhysical Review X
Volume9
Issue number4
DOIs
Publication statusPublished - 26 Nov 2019

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Overcoming Noise in Entanglement Distribution'. Together they form a unique fingerprint.

  • Cite this

    Ecker, S., Bouchard, F., Bulla, L., Brandt, F., Kohout, O., Steinlechner, F., Fickler, R., Malik, M., Guryanova, Y., Ursin, R., & Huber, M. (2019). Overcoming Noise in Entanglement Distribution. Physical Review X, 9(4), [041042]. https://doi.org/10.1103/PhysRevX.9.041042