TY - JOUR
T1 - Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis
AU - Panayiotidis, Mihalis I
AU - Franco, Rodrigo
AU - Bortner, Carl D
AU - Cidlowski, John A
PY - 2010/7
Y1 - 2010/7
N2 - Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na(+)-K(+)-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na(+)-K(+)-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H(2)O(2), thapsigargin or UV-C implicating a role for the Na(+)-K(+)-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca(2+) homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca(2+) levels in response to H(2)O(2), thapsigargin or UV-C. FasL-induced alterations in Ca(2+) were not abolished in Ca(2+)-free medium but incubation of cells with BAPTA-AM inhibited both Ca(2+) perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na(+)-K(+)-ATPase activity during apoptosis is linked to perturbations in cell Ca(2+) homeostasis that modulate apoptosis induced by the activation of Fas by FasL.
AB - Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na(+)-K(+)-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na(+)-K(+)-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H(2)O(2), thapsigargin or UV-C implicating a role for the Na(+)-K(+)-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca(2+) homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca(2+) levels in response to H(2)O(2), thapsigargin or UV-C. FasL-induced alterations in Ca(2+) were not abolished in Ca(2+)-free medium but incubation of cells with BAPTA-AM inhibited both Ca(2+) perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na(+)-K(+)-ATPase activity during apoptosis is linked to perturbations in cell Ca(2+) homeostasis that modulate apoptosis induced by the activation of Fas by FasL.
U2 - 10.1007/s10495-010-0494-8
DO - 10.1007/s10495-010-0494-8
M3 - Article
C2 - 20422450
SN - 1573-675X
VL - 15
SP - 834
EP - 849
JO - Apoptosis : an international journal on programmed cell death
JF - Apoptosis : an international journal on programmed cell death
IS - 7
ER -