Organotin and osmoregulation: quantifying the effects of environmental concentrations of sediment-associated TBT and TPhT on the freshwater-adapted European flounder, Platichthys flesus (L.)

Mark G J Hartl, Stephen Hutchinson, Lawrence E Hawkins

    Research output: Contribution to journalArticlepeer-review

    20 Citations (Scopus)

    Abstract

    Chronic (5 weeks) exposure of freshwater-adapted European flounder, Platichthys flesus (L.), to environmental concentrations of sediment-associated tri-n-butyltin chloride (TBTCl) and tri phenyltin chloride (TPhTCl) caused significant changes to hydromineral fluxes and membrane permeability, mechanisms that maintain osmotic homeostasis. The half-time of exchange of tritiated water (THO) in TBTCl- and TPhTCl-exposed fish was significantly increased during the first 2 weeks of the experiment and then decreased steadily, eventually reaching the level that the control group had constantly maintained throughout the experiment. This change in apparent water permeability was accompanied by a significant decrease in diffusional water Bur across the membranes. Passive Na+-efflux across the gills was increased significantly but effluxes in the control group were near constant over the same time span. Drinking rates in the organotin groups increased significantly while the rate of urine production did not change. This lead to an increased net water balance in the organotin groups and consequently to a significant reduction of the blood osmolality of both organotin groups when compared to a control. There would appear to be a metabolic cost attached to the changes produced by exposure to environmental levels of organotin compounds which are manifested as a minimal increase in body length compared to the controls. (C) 2001 Elsevier Science B.V. All rights reserved.

    Original languageEnglish
    Pages (from-to)267-278
    Number of pages12
    JournalJournal of Experimental Marine Biology and Ecology
    Volume256
    Issue number2
    DOIs
    Publication statusPublished - 31 Jan 2001

    Fingerprint

    Dive into the research topics of 'Organotin and osmoregulation: quantifying the effects of environmental concentrations of sediment-associated TBT and TPhT on the freshwater-adapted European flounder, Platichthys flesus (L.)'. Together they form a unique fingerprint.

    Cite this