TY - JOUR
T1 - On the unusual stability of valence anions of thymine based on very rare tautomers
T2 - A computational study
AU - Mazurkiewicz, Kamil
AU - Bachorz, Rafał A.
AU - Gutowski, Maciej
AU - Rak, Janusz
PY - 2006/12/7
Y1 - 2006/12/7
N2 - We characterized anionic states of thymine using various electronic structure methods, with the most accurate results obtained at the CCSD(T)/aug-cc-pVDZ level of theory followed by extrapolations to complete basis set limits. We found that the most stable anion in the gas phase is related to an imino-oxo tautomer, in which the N1H proton is transferred to the C5 atom. This valence anion, a Tn1c5, is characterized by an electron vertical detachment energy (VDE) of 1251 meV and it is adiabatically stable with respect to the canonical neutral nTcan by 2.4 kcal/mol. It is also more stable than the dipole-bound (aTcandbs) and valence anion (aTcanval) of the canonical tautomer. The VDE values for aTcandbs and aTcanval, are 55 and 457 meV, respectively. Another, anionic, low-lying imino-oxo tautomer with a VDE of 2458 meV has a proton transferred from N3H to C5 (aTn3c5). It is less stable than aTcanval, by 3.3 kcal/mol. The mechanism of formation of anionic tautomers with the carbons C5 or C6 protonated may involve intermolecular proton transfer or dissociative electron attachment to the canonical neutral tautomer followed by a barrier-free attachment of a hydrogen atom to C5. The six-member ring structure of the anionic tautomers with carbon atoms protonated is unstable upon an excess electron detachment. Within the PCM hydration model, the low-lying valence anions become adiabatically bound with respect to the canonical neutral; aTn3c5 becomes the most stable, being followed by aT n1c5, aTn3c5, aTcan, and aTn1c6 © 2006 American Chemical Society.
AB - We characterized anionic states of thymine using various electronic structure methods, with the most accurate results obtained at the CCSD(T)/aug-cc-pVDZ level of theory followed by extrapolations to complete basis set limits. We found that the most stable anion in the gas phase is related to an imino-oxo tautomer, in which the N1H proton is transferred to the C5 atom. This valence anion, a Tn1c5, is characterized by an electron vertical detachment energy (VDE) of 1251 meV and it is adiabatically stable with respect to the canonical neutral nTcan by 2.4 kcal/mol. It is also more stable than the dipole-bound (aTcandbs) and valence anion (aTcanval) of the canonical tautomer. The VDE values for aTcandbs and aTcanval, are 55 and 457 meV, respectively. Another, anionic, low-lying imino-oxo tautomer with a VDE of 2458 meV has a proton transferred from N3H to C5 (aTn3c5). It is less stable than aTcanval, by 3.3 kcal/mol. The mechanism of formation of anionic tautomers with the carbons C5 or C6 protonated may involve intermolecular proton transfer or dissociative electron attachment to the canonical neutral tautomer followed by a barrier-free attachment of a hydrogen atom to C5. The six-member ring structure of the anionic tautomers with carbon atoms protonated is unstable upon an excess electron detachment. Within the PCM hydration model, the low-lying valence anions become adiabatically bound with respect to the canonical neutral; aTn3c5 becomes the most stable, being followed by aT n1c5, aTn3c5, aTcan, and aTn1c6 © 2006 American Chemical Society.
UR - http://www.scopus.com/inward/record.url?scp=33846036445&partnerID=8YFLogxK
U2 - 10.1021/jp065666f
DO - 10.1021/jp065666f
M3 - Article
SN - 1520-6106
VL - 110
SP - 24696
EP - 24707
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 48
ER -