On the strength of hydrogen bonding within water clusters on the coordination limit

Víctor Manuel Castor-Villegas, José Manuel Guevara-Vela, Wilmer Esteban Vallejo Narváez, Ángel Martín Pendás, Tomás Rocha-Rinza*, Alberto Fernández-Alarcón*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Hydrogen bonds (HB) are arguably the most important noncovalent interactions in chemistry. We study herein how differences in connectivity alter the strength of HBs within water clusters of different sizes. We used for this purpose the interacting quantum atoms energy partition, which allows for the quantification of HB formation energies within a molecular cluster. We could expand our previously reported hierarchy of HB strength in these systems (Phys. Chem. Chem. Phys., 2016, 18, 19557) to include tetracoordinated monomers. Surprisingly, the HBs between tetracoordinated water molecules are not the strongest HBs despite the widespread occurrence of these motifs (e.g., in ice Ih). The strongest HBs within H2O clusters involve tricoordinated monomers. Nonetheless, HB tetracoordination is preferred in large water clusters because (a) it reduces HB anticooperativity associated with double HB donors and acceptors and (b) it results in a larger number of favorable interactions in the system. Finally, we also discuss (a) the importance of exchange-correlation to discriminate among the different examined types of HBs within H2O clusters, (b) the use of the above-mentioned scale to quickly assess the relative stability of different isomers of a given water cluster, and (c) how the findings of this research can be exploited to indagate about the formation of polymorphs in crystallography. Overall, we expect that this investigation will provide valuable insights into the subtle interplay of tri- and tetracoordination in HB donors and acceptors as well as the ensuing interaction energies within H2O clusters.
Original languageEnglish
Pages (from-to)2266-2277
Number of pages12
JournalJournal of Computational Chemistry
Volume41
Issue number26
DOIs
Publication statusPublished - 5 Oct 2020

Keywords

  • coordination number
  • hydrogen bonding
  • interacting quantum atoms
  • water clusters

ASJC Scopus subject areas

  • General Chemistry
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'On the strength of hydrogen bonding within water clusters on the coordination limit'. Together they form a unique fingerprint.

Cite this