On the non-locality of quasiconvexity

Jan Kristensen

Research output: Contribution to journalArticle

Abstract

It is shown that in the class of smooth real-valued functions on n × m matrices (n = 3, m = 2) there can be no "local condition" which is equivalent to quasiconvexity. © Elsevier, Paris.

Original languageEnglish
Pages (from-to)1-13
Number of pages13
JournalAnnales de l'Institut Henri Poincaré (C) Analyse Non Linéaire
Volume16
Issue number1
Publication statusPublished - Jan 1999

Fingerprint

Quasiconvexity
Nonlocality
Class

Keywords

  • Quasiconvexity
  • Rank-one convexity

Cite this

@article{ce94d63c9eea4585a63b745d1e18f7c5,
title = "On the non-locality of quasiconvexity",
abstract = "It is shown that in the class of smooth real-valued functions on n × m matrices (n = 3, m = 2) there can be no {"}local condition{"} which is equivalent to quasiconvexity. {\circledC} Elsevier, Paris.",
keywords = "Quasiconvexity, Rank-one convexity",
author = "Jan Kristensen",
year = "1999",
month = "1",
language = "English",
volume = "16",
pages = "1--13",
journal = "Annales de l'Institut Henri Poincar{\'e} (C) Analyse Non Lin{\'e}aire",
issn = "0294-1449",
publisher = "Elsevier Masson SAS",
number = "1",

}

On the non-locality of quasiconvexity. / Kristensen, Jan.

In: Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire, Vol. 16, No. 1, 01.1999, p. 1-13.

Research output: Contribution to journalArticle

TY - JOUR

T1 - On the non-locality of quasiconvexity

AU - Kristensen, Jan

PY - 1999/1

Y1 - 1999/1

N2 - It is shown that in the class of smooth real-valued functions on n × m matrices (n = 3, m = 2) there can be no "local condition" which is equivalent to quasiconvexity. © Elsevier, Paris.

AB - It is shown that in the class of smooth real-valued functions on n × m matrices (n = 3, m = 2) there can be no "local condition" which is equivalent to quasiconvexity. © Elsevier, Paris.

KW - Quasiconvexity

KW - Rank-one convexity

UR - http://www.scopus.com/inward/record.url?scp=0001921052&partnerID=8YFLogxK

M3 - Article

VL - 16

SP - 1

EP - 13

JO - Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire

JF - Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire

SN - 0294-1449

IS - 1

ER -