Abstract
We investigate the existence of principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem -?u(x) = ?g(x)u(x) on D; ?u/?n(x) + au(x) = 0 on ?D, where D is a bounded region in RN, g is an indefinite weight function and a e R may be positive, negative or zero. © 1999 American Mathematical Society.
Original language | English |
---|---|
Pages (from-to) | 125-130 |
Number of pages | 6 |
Journal | Proceedings of the American Mathematical Society |
Volume | 127 |
Issue number | 1 |
Publication status | Published - 1999 |
Keywords
- Indefinite weight function
- Principal eigenvalues