### Abstract

We investigate the existence of principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem -?u(x) = ?g(x)u(x) on D; ?u/?n(x) + au(x) = 0 on ?D, where D is a bounded region in R^{N}, g is an indefinite weight function and a e R may be positive, negative or zero. © 1999 American Mathematical Society.

Original language | English |
---|---|

Pages (from-to) | 125-130 |

Number of pages | 6 |

Journal | Proceedings of the American Mathematical Society |

Volume | 127 |

Issue number | 1 |

Publication status | Published - 1999 |

### Keywords

- Indefinite weight function
- Principal eigenvalues

## Fingerprint Dive into the research topics of 'On principal eigenvalues for boundary value problems with indefinite weight and robin boundary conditions'. Together they form a unique fingerprint.

## Cite this

Afrouzi, G. A., & Brown, K. J. (1999). On principal eigenvalues for boundary value problems with indefinite weight and robin boundary conditions.

*Proceedings of the American Mathematical Society*,*127*(1), 125-130.