On principal eigenvalues for boundary value problems with indefinite weight and robin boundary conditions

G. A. Afrouzi, K. J. Brown

Research output: Contribution to journalArticlepeer-review

63 Citations (Scopus)

Abstract

We investigate the existence of principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem -?u(x) = ?g(x)u(x) on D; ?u/?n(x) + au(x) = 0 on ?D, where D is a bounded region in RN, g is an indefinite weight function and a e R may be positive, negative or zero. © 1999 American Mathematical Society.

Original languageEnglish
Pages (from-to)125-130
Number of pages6
JournalProceedings of the American Mathematical Society
Volume127
Issue number1
Publication statusPublished - 1999

Keywords

  • Indefinite weight function
  • Principal eigenvalues

Fingerprint

Dive into the research topics of 'On principal eigenvalues for boundary value problems with indefinite weight and robin boundary conditions'. Together they form a unique fingerprint.

Cite this