On principal eigenvalues for boundary value problems with indefinite weight and robin boundary conditions

G. A. Afrouzi, K. J. Brown

Research output: Contribution to journalArticle

Abstract

We investigate the existence of principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem -?u(x) = ?g(x)u(x) on D; ?u/?n(x) + au(x) = 0 on ?D, where D is a bounded region in RN, g is an indefinite weight function and a e R may be positive, negative or zero. © 1999 American Mathematical Society.

Original languageEnglish
Pages (from-to)125-130
Number of pages6
JournalProceedings of the American Mathematical Society
Volume127
Issue number1
Publication statusPublished - 1999

Fingerprint

Indefinite Weight
Principal Eigenvalue
Robin Boundary Conditions
Weight Function
Eigenfunctions
Boundary Value Problem
Eigenvalue
Zero

Keywords

  • Indefinite weight function
  • Principal eigenvalues

Cite this

@article{889b0dd4e12b41dba17b53fb2583aa78,
title = "On principal eigenvalues for boundary value problems with indefinite weight and robin boundary conditions",
abstract = "We investigate the existence of principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem -?u(x) = ?g(x)u(x) on D; ?u/?n(x) + au(x) = 0 on ?D, where D is a bounded region in RN, g is an indefinite weight function and a e R may be positive, negative or zero. {\circledC} 1999 American Mathematical Society.",
keywords = "Indefinite weight function, Principal eigenvalues",
author = "Afrouzi, {G. A.} and Brown, {K. J.}",
year = "1999",
language = "English",
volume = "127",
pages = "125--130",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "1",

}

On principal eigenvalues for boundary value problems with indefinite weight and robin boundary conditions. / Afrouzi, G. A.; Brown, K. J.

In: Proceedings of the American Mathematical Society, Vol. 127, No. 1, 1999, p. 125-130.

Research output: Contribution to journalArticle

TY - JOUR

T1 - On principal eigenvalues for boundary value problems with indefinite weight and robin boundary conditions

AU - Afrouzi, G. A.

AU - Brown, K. J.

PY - 1999

Y1 - 1999

N2 - We investigate the existence of principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem -?u(x) = ?g(x)u(x) on D; ?u/?n(x) + au(x) = 0 on ?D, where D is a bounded region in RN, g is an indefinite weight function and a e R may be positive, negative or zero. © 1999 American Mathematical Society.

AB - We investigate the existence of principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem -?u(x) = ?g(x)u(x) on D; ?u/?n(x) + au(x) = 0 on ?D, where D is a bounded region in RN, g is an indefinite weight function and a e R may be positive, negative or zero. © 1999 American Mathematical Society.

KW - Indefinite weight function

KW - Principal eigenvalues

UR - http://www.scopus.com/inward/record.url?scp=22444456161&partnerID=8YFLogxK

M3 - Article

VL - 127

SP - 125

EP - 130

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 1

ER -