Abstract
When compact manifolds X and Y are both even dimensional, their Euler characteristics obey the Künneth formula χ(X × Y) = χ(X)χ(Y). In terms of the Betti numbers bp(X), χ(X) = Σp(−1)pbp(X), implying that χ(X) = 0 when X is odd dimensional. We seek a linear combination of Betti numbers, called ρ, that obeys an analogous formula ρ(X × Y) = χ(X)ρ(Y) when Y is odd dimensional. The unique solution is ρ(Y) = − Σp(−1)ppbp(Y). Physical applications include: (1) ρ → (−1)mρ under a generalized mirror map in d = 2m + 1 dimensions, in analogy with χ → (−1)mχ in d = 2m; (2) ρ appears naturally in compactifications of M-theory. For example, the 4-dimensional Weyl anomaly for M-theory on X4× Y7 is given by χ(X4)ρ(Y7) = ρ(X4× Y7) and hence vanishes when Y7 is self-mirror. Since, in particular, ρ(Y × S1) = χ(Y), this is consistent with the corresponding anomaly for Type IIA on X4× Y6, given by χ(X4)χ(Y6) = χ(X4× Y6), which vanishes when Y6 is self-mirror; (3) In the partition function of p-form gauge fields, ρ appears in odd dimensions as χ does in even.
Original language | English |
---|---|
Article number | 178 |
Journal | Journal of High Energy Physics |
Volume | 2021 |
Issue number | 12 |
DOIs | |
Publication status | Published - 23 Dec 2021 |
Keywords
- Anomalies in Field and String Theories
- BRST Quantization
- M-Theory
ASJC Scopus subject areas
- Nuclear and High Energy Physics