Abstract
This paper presents classification of spherical objects with different physical properties. The classification is based on the energy distribution in wideband pulses that have been scattered from objects. The echo is represented in Time-Frequency Domain (TFD), using Short Time Fourier Transform (STFT) with different window lengths, and is fed into a Convolution Neural Network (CNN) for classification. The results for different window lengths are analysed to study the influence of time and frequency resolution in classification. The CNN performs the best results with accuracy of (98.44 ± 0.8)% over 5 object classes trained on grayscale TFD images with 0.1 ms window length of STFT. The CNN is compared with a Multilayer Perceptron classifier, Support Vector Machine, and Gradient Boosting.
Original language | English |
---|---|
Title of host publication | 2017 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) |
Publisher | IEEE |
ISBN (Electronic) | 9781509063413 |
DOIs | |
Publication status | Published - 7 Dec 2017 |
Event | 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing - Tokyo, Japan Duration: 25 Sept 2017 → 28 Sept 2017 |
Conference
Conference | 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing |
---|---|
Abbreviated title | MLSP 2017 |
Country/Territory | Japan |
City | Tokyo |
Period | 25/09/17 → 28/09/17 |
Keywords
- Convolution neural networks
- Object classification
- Time-frequency representation
- Wideband pulses
ASJC Scopus subject areas
- Human-Computer Interaction
- Signal Processing