Abstract
This study presents a two-dimensional numerical analysis for thermal control strategies on potential energy savings in a double-pane window integrated with see-through a-Si photovoltaic (PV) cells with low-emittance (low-e) coatings. Both heat transmission through the air gap by combined convection and radiation, and air flow patterns within the cavity of the window were considered. The convection-conducting mechanisms in the cavity of the double-pane window have been closely investigated in this paper. Based on numerical predictions, the effect of Rayleigh number on airflow patterns was investigated for low Rayleigh numbers in the range of 103 ⩽ Ra ⩽ 105. The effect of the low-e coatings on the glazing U-value was also explored in this paper. It was found that a large quantity of heat transfer by radiation could be reduced. This novel glazing system could help engineers’ design in more advanced window systems with building-integrated photovoltaic (BIPV) applications in modern buildings.
Original language | English |
---|---|
Pages (from-to) | 3431–3437 |
Number of pages | 7 |
Journal | Applied Energy |
Volume | 87 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 2010 |