Abstract
Electrodeposition is a widely used technique for the fabrication of high aspect ratio microstructures. In recent years, much research has been focused within this area aiming to understand the physics behind the filling of high aspect ratio vias and trenches on substrates and in particular how they can be made without the formation of voids in the deposited material. This paper reports on the fundamental work towards the advancement of numerical algorithms that can predict the electrodeposition process in micron scaled features. Two different numerical approaches have been developed, which capture the motion of the deposition interface and 2-D simulations are presented for both methods under two deposition regimes: those where surface kinetics is governed by Ohm's law and the Butler-Volmer equation, respectively. In the last part of this paper the modelling of acoustic forces and their subsequent impact on the deposition profile through convection is examined. Copyright © 2009 John Wiley & Sons, Ltd.
Original language | English |
---|---|
Pages (from-to) | 237-268 |
Number of pages | 32 |
Journal | International Journal for Numerical Methods in Fluids |
Volume | 64 |
Issue number | 3 |
DOIs | |
Publication status | Published - Sept 2010 |
Keywords
- CFD
- Electrodeposition
- Level set method
- LIGA
- Megasonic agitation
- Microsystems