Abstract
We present and analyze a novel manifestation of the revival phenomenon for linear spatially periodic evolution equations , in the concrete case of three nonlocal equations that arise in water wave theory and are defined by convolution kernels. Revival in these cases is manifested in the form of dispersively quantized cusped solutions at rational times. We give an analytic description of this phenomenon, and present illustrative numerical simulations.
Original language | English |
---|---|
Pages (from-to) | 1209-1239 |
Number of pages | 31 |
Journal | Studies in Applied Mathematics |
Volume | 147 |
Issue number | 4 |
Early online date | 31 May 2021 |
DOIs | |
Publication status | Published - Nov 2021 |
Keywords
- dispersive quantization
- dynamical systems
- partial differential equations
- periodic boundary value problem
- Talbot effect
ASJC Scopus subject areas
- Applied Mathematics