Abstract
We present a detailed experimental investigation which uncovers the nature of light bullets generated from self-focusing in a bulk dielectric medium with Kerr nonlinearity in the anomalous group velocity dispersion regime. By high dynamic range measurements of three-dimensional intensity profiles, we demonstrate that the light bullets consist of a sharply localized high-intensity core, which carries the self-compressed pulse and contains approximately 25% of the total energy, and a ring-shaped spatiotemporal periphery. Subdiffractive propagation along with dispersive broadening of the light bullets in free space after they exit the nonlinear medium indicate a strong space-time coupling within the bullet. This finding is confirmed by measurements of a spatiotemporal energy density flux that exhibits the same features as a stationary, polychromatic Bessel beam, thus highlighting the nature of the light bullets.
Original language | English |
---|---|
Article number | 193901 |
Journal | Physical Review Letters |
Volume | 112 |
Issue number | 19 |
DOIs | |
Publication status | Published - 12 May 2014 |
ASJC Scopus subject areas
- General Physics and Astronomy