Abstract
Nanopesticides or nano plant protection products represent an emerging technological development that, in relation to pesticide use, could offer a range of benefits including increased efficacy, durability, and a reduction in the amounts of active ingredients that need to be used. A number of formulation types have been suggested including emulsions (e.g., nanoemulsions), nanocapsules (e.g., with polymers), and products containing pristine engineered nanoparticles, such as metals, metal oxides, and nanoclays. The increasing interest in the use of nanopesticides raises questions as to how to assess the environmental risk of these materials for regulatory purposes. Here, the current approaches for environmental risk assessment of pesticides are reviewed and the question of whether these approaches are fit for purpose for use on nanopesticides is addressed. Potential adaptations to existing environmental risk assessment tests and procedures for use with nanopesticides are discussed, addressing aspects such as analysis and characterization, environmental fate and exposure assessment, uptake by biota, ecotoxicity, and risk assessment of nanopesticides in aquatic and terrestrial ecosystems. Throughout, the main focus is on assessing whether the presence of the nanoformulation introduces potential differences relative to the conventional active ingredients. The proposed changes in the test methodology, research priorities, and recommendations would facilitate the development of regulatory approaches and a regulatory framework for nanopesticides.
Original language | English |
---|---|
Pages (from-to) | 4227-4240 |
Number of pages | 14 |
Journal | Journal of Agricultural and Food Chemistry |
Volume | 62 |
Issue number | 19 |
DOIs | |
Publication status | Published - 14 May 2014 |
Keywords
- ecotoxicity
- environmental fate
- environmental risk
- nanopesticides
ASJC Scopus subject areas
- General Agricultural and Biological Sciences
- General Chemistry
Fingerprint
Dive into the research topics of 'Nanopesticides: Guiding principles for regulatory evaluation of environmental risks'. Together they form a unique fingerprint.Profiles
-
Teresa F. Fernandes
- School of Energy, Geoscience, Infrastructure and Society - Professor
- School of Energy, Geoscience, Infrastructure and Society, Institute for Life and Earth Sciences - Professor
Person: Academic (Research & Teaching)