Abstract
Hierarchical nanostructured titanium dioxide (TiO2) clumps were fabricated using electrostatic spray with subsequent nitrogen-ion doping by an ion-implantation technique for improvement of energy conversion efficiency for quantum dot-sensitized solar cells (QDSCs). CdSe quantum dots were directly assembled on the produced N-ion-implanted TiO2 photoanodes by chemical bath deposition, and their photovoltaic performance was evaluated in a polysulfide electrolyte with a Pt counter electrode. We found that the photovoltaic performance of TiO2 electrodes was improved by nearly 145% upon N-ion implantation. The efficiency improvement seems to be due to (1) the enhancement of electron transport through the TiO2 layer by inter-particle necking of primary TiO2 particles and (2) an increase in the recombination resistance at TiO2/QD/electrolyte interfaces by healing the surface states or managing the oxygen vacancies upon N-ion doping. Therefore, N-ion-doped photoanodes offer a viable pathway to develop more efficient QD or dye-sensitized solar cells.
Original language | English |
---|---|
Pages (from-to) | 2416-2422 |
Number of pages | 7 |
Journal | Nanoscale |
Volume | 4 |
Issue number | 7 |
DOIs | |
Publication status | Published - 7 Apr 2012 |
ASJC Scopus subject areas
- General Materials Science