Abstract
We investigate the joint distribution and the multivariate survival functions for the maxima of an Ornstein-Uhlenbeck (OU) process in consecutive time-intervals. A PDE method, alongside an eigenfunction expansion is adopted, with which we first calculate the distribution and the survival functions for the maximum of a homogeneous OU-process in a single interval. By a deterministic time-change and a parameter translation, this result can be extended to an inhomogeneous OU-process. Next, we derive a general formula for the joint distribution and the survival functions for the maxima of a continuous Markov process in consecutive periods. With these results, one can obtain semi-analytical expressions for the joint distribution and the multivariate survival functions for the maxima of an OU-process, with piecewise constant parameter functions, in consecutive time periods. The joint distribution and the survival functions can be evaluated numerically by an iterated quadrature scheme, which can be implemented efficiently by matrix multiplications. Moreover, we show that the computation can be further simplified to the product of single quadratures if the filtration is enlarged. Such results may be used for the modeling of heatwaves and related risk management challenges.
Original language | English |
---|---|
Pages (from-to) | 569-609 |
Number of pages | 41 |
Journal | Stochastic Analysis and Applications |
Volume | 39 |
Issue number | 4 |
Early online date | 22 Sept 2020 |
DOIs | |
Publication status | Published - 4 Jul 2021 |
Keywords
- math.PR