Multiphysics simulation of microwave curing in micro-electronics packaging applications

T. Tilford, K. I. Sinclair, C. Bailey, M. P Y Desmulliez, G. Goussettis, A. K. Parrott, A. J. Sangster

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Purpose - This paper aims to present an open-ended microwave curing system for microelectronics components and a numerical analysis framework for virtual testing and prototyping of the system, enabling design of physical prototypes to be optimized, expediting the development process. Design/methodology/approach - An open-ended microwave oven system able to enhance the cure process for thermosetting polymer materials utilised in microelectronics applications is presented. The system is designed to be mounted on a precision placement machine enabling curing of individual components on a circuit board. The design of the system allows the heating pattern and heating rate to be carefully controlled optimising cure rate and cure quality. A multi-physics analysis approach has been adopted to form a numerical model capable of capturing the complex coupling that exists between physical processes. Electromagnetic analysis has been performed using a Yee finite-difference time-domain scheme, while an unstructured finite volume method has been utilized to perform thermophysical analysis. The two solvers are coupled using a sampling-based cross-mapping algorithm. Findings - The numerical results obtained demonstrate that the numerical model is able to obtain solutions for distribution of temperature, rate of cure, degree of cure and thermally induced stresses within an idealised polymer load heated by the proposed microwave system. Research limitations/implications - The work is limited by the absence of experimentally derived material property data and comparative experimental results. However, the model demonstrates that the proposed microwave system would seem to be a feasible method of expediting the cure rate of polymer materials. Originality/value - The findings of this paper will help to provide an understanding of the behaviour of thermosetting polymer materials during microwave cure processing. © Emerald Group Publishing Limited.

Original languageEnglish
Pages (from-to)26-33
Number of pages8
JournalSoldering and Surface Mount Technology
Volume19
Issue number3
DOIs
Publication statusPublished - 2007

Keywords

  • Electronic engineering
  • Microwaves
  • Polymers
  • Simulation

Fingerprint Dive into the research topics of 'Multiphysics simulation of microwave curing in micro-electronics packaging applications'. Together they form a unique fingerprint.

  • Cite this