Abstract
We have examined the catalytic action of β- and γ-Mo2N in the partial hydrogenation of acetylene. The influence of variations in GHSV (230–1600 min−1), feed composition (5–30% v/v N2/H2), heating rate (0.1–5 K min−1) and isothermal hold (1–7 h at 933 K) on nitride structural properties has been assessed. At ≥ 2 K min−1, β-Mo2N (≤ 15 m2 g−1) consisting of small crystallites (< 5 μm) was generated. At ≤ 0.5 K min−1, γ-Mo2N with a platelet morphology and surface area ≥ 45 m2 g−1 was formed. High GHSV, low N2 feed content and a prolonged isothermal hold served to increase γ-Mo2N area (to 135 m2 g−1). Lower alkene selectivity and a twofold higher specific (per m2) acetylene hydrogenation rate were recorded for β-Mo2N and linked to higher surface Mo/N ratio (from XPS). Olefin selectivity for both nitrides was greater than that reported for Pd catalysts. Moreover, we recorded negligible green oil formation in reactions over γ-Mo2N.
Original language | English |
---|---|
Pages (from-to) | 6707–6718 |
Number of pages | 12 |
Journal | Journal of Materials Science |
Volume | 53 |
Issue number | 9 |
Early online date | 22 Jan 2018 |
DOIs | |
Publication status | Published - May 2018 |
ASJC Scopus subject areas
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering
Fingerprint
Dive into the research topics of 'Molybdenum nitrides: a study of synthesis variables and catalytic performance in acetylene hydrogenation'. Together they form a unique fingerprint.Profiles
-
Fernando Cardenas-Lizana
- School of Engineering & Physical Sciences - Assistant Professor
- School of Engineering & Physical Sciences, Institute of Mechanical, Process & Energy Engineering - Assistant Professor
Person: Academic (Research & Teaching)