TY - JOUR
T1 - Modified phase locked loop for grid connected single phase inverter
AU - Radwan, Eyad
AU - Salih, Khalil
AU - Awada, Emad
AU - Nour, Mutasim Ibrahim
PY - 2019/10/1
Y1 - 2019/10/1
N2 - Connecting a single-phase or three-phase inverter to the grid in distributed generation applications requires synchronization with the grid. Synchronization of an inverter-connected distributed generation units in its basic form necessitates accurate information about the frequency and phase angle of the utility grid. Phase Locked Loop (PLL) circuit is usually used for the purpose of synchronization. However, deviation in the grid frequency from nominal value will cause errors in the PLL estimated outputs, and that’s a major drawback. Moreover, if the grid is heavily distorted with low order harmonics the estimation of the grid phase angle deteriorates resulting in higher oscillations (errors) appearing in the synchronization voltage signals. This paper proposes a modified time delay PLL (MTDPLL) technique that continuously updates a variable time delay unit to keep track of the variation in the grid frequency. The MTDPLL is implemented along a Multi-Harmonic Decoupling Cell (MHDC) to overcome the effects of distortion caused by gird lower order harmonics. The performance of the proposed MTDPLL is verified by simulation and compared in terms of performance and accuracy with recent PLL techniques.
AB - Connecting a single-phase or three-phase inverter to the grid in distributed generation applications requires synchronization with the grid. Synchronization of an inverter-connected distributed generation units in its basic form necessitates accurate information about the frequency and phase angle of the utility grid. Phase Locked Loop (PLL) circuit is usually used for the purpose of synchronization. However, deviation in the grid frequency from nominal value will cause errors in the PLL estimated outputs, and that’s a major drawback. Moreover, if the grid is heavily distorted with low order harmonics the estimation of the grid phase angle deteriorates resulting in higher oscillations (errors) appearing in the synchronization voltage signals. This paper proposes a modified time delay PLL (MTDPLL) technique that continuously updates a variable time delay unit to keep track of the variation in the grid frequency. The MTDPLL is implemented along a Multi-Harmonic Decoupling Cell (MHDC) to overcome the effects of distortion caused by gird lower order harmonics. The performance of the proposed MTDPLL is verified by simulation and compared in terms of performance and accuracy with recent PLL techniques.
U2 - 10.11591/ijece.v9i5.pp3934-3943
DO - 10.11591/ijece.v9i5.pp3934-3943
M3 - Article
SN - 2088-8708
VL - 9
SP - 3934
EP - 3943
JO - International Journal of Electrical and Computer Engineering
JF - International Journal of Electrical and Computer Engineering
IS - 5
ER -