Abstract
In this paper, we present a model to predict thermal stress-induced birefringence in high energy, high repetition rate diode-pumped Yb:YAG lasers. The model calculates thermal depolarisation as a function of gain medium geometry, pump power, cooling parameters, and input polarisation state. We show that model predictions are in good agreement with experimental observations carried out on a DiPOLE 100 J, 10 Hz laser amplifier. We show that singlepass depolarisation strongly depends on input polarisation state and pumping parameters. In the absence of any depolarisation compensation scheme, depolarisation varies over a range between 5% and 40%. The strong dependence of thermal stress-induced depolarisation on input polarisation indicates that, in the case of multipass amplifiers, the use of waveplates after every pass can reduce depolarisation losses significantly. We expect that this study will assist in the design and optimisation of Yb:YAG lasers.
Original language | English |
---|---|
Pages (from-to) | 5607-5623 |
Number of pages | 17 |
Journal | Optics Express |
Volume | 29 |
Issue number | 4 |
Early online date | 5 Feb 2021 |
DOIs | |
Publication status | Published - 15 Feb 2021 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics