Methods to describe barotropic vortices by global fields and vortex characteristics

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Results from an experimental study of vortices in a rotating shear layer are presented. The data are in the form of maps of the instantaneous horizontal velocity field obtained by a particle tracking technique. Two fundamentally different methods to analyse time series of these velocity fields are presented and compared. One technique is the empirical orthogonal function (EOF) analysis, and the other method describes the flow field in terms of a few individual localised vortices. The flows discussed here are time-dependent two-vortex flows, which could either be described as a global mode 2 or as a collection of four unequal vortices. The results show that, while EOF analysis is a very powerful tool to detect fairly regular travelling modes or stationary features, it cannot detect local dynamics. The vortex identification technique is very good at detecting local structures and events but cannot put them into the context of a global flow structure. The comparison of the techniques shows indications that the time-dependence found in the system for low mode numbers could arise from an interaction of the large scale, global-mode flow with a local mechanism of vortex generation and shedding at a solid boundary.

Original languageEnglish
Pages (from-to)189-200
Number of pages12
JournalNonlinear Processes in Geophysics
Volume9
Issue number3-4
Publication statusPublished - 2002

Fingerprint Dive into the research topics of 'Methods to describe barotropic vortices by global fields and vortex characteristics'. Together they form a unique fingerprint.

Cite this