Abstract
Increasing the collection efficiency from solid-state emitters is an important step towards achieving robust single photon sources, as well as optically connecting different nodes of quantum hardware. A metallic substrate may be the most basic method of improving the collection of photons from quantum dots, with predicted collection efficiency increases of up to 50%. The established 'method-of-images' approach models the effects of a reflective surface for atomic and molecular emitters by replacing the metal surface with a second fictitious emitter which ensures appropriate electromagnetic boundary conditions. Here, we extend the approach to the case of driven solid-state emitters, where exciton-phonon interactions play a key role in determining the optical properties of the system. We derive an intuitive polaron master equation and demonstrate its agreement with the complementary half-sided cavity formulation of the same problem. Our extended image approach offers a straightforward route towards studying the dynamics of multiple solid-state emitters near a metallic surface.
Original language | English |
---|---|
Article number | 165403 |
Journal | Physical Review B |
Volume | 95 |
Issue number | 16 |
DOIs | |
Publication status | Published - 5 Apr 2017 |