Abstract
Systems and methods herein produce an isolated carbon particle embedded diamond-like carbon (DLC) coating having increased toughness, increased hardness, and enhanced wear resistance. In embodiments, a physical vapor deposition (PVD) chamber houses a pure graphite target at a distance from a substrate, and an in-situ synthesis of isolated carbon particles simultaneous with hydrogen-free DLC coating deposition is provided through unbalanced magnetron sputtering by localized injection of helium gas in a pulse mode with different durations. The resultant coating may include carbon while omitting other elements, and the carbon particles form covalent bonding with the host DLC matrix. Processes disclosed herein are easier to control and manipulate as compared to traditional metal doped DLC coatings.
Original language | English |
---|---|
Patent number | US10519539B2 |
Priority date | 24/03/17 |
Filing date | 24/03/17 |
Publication status | Published - 31 Dec 2019 |